ХИМИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ ПРИ ЗАХОРОНЕНИИ КИСЛЫХ ЖИДКИХ ТЕХНОЛОГИЧЕСКИХ ОТХОДОВ В ПЕСЧАНЫХ ПЛАСТАХ-КОЛЛЕКТОРАХ. РЕЗУЛЬТАТЫ КИНЕТИКО-ТЕРМОДИНАМИЧЕСКОГО МОДЕЛИРОВАНИЯ Мироненко М.В., Черкасова Е.В. (ГЕОХИ РАН), Захарова Е.В. (ИФХЭ РАН), Зубков А.А. (СХК)

mironenko@geokhi.ru

Ключевые слова: подземные закачки технологических отходов, кинетико-термодинамическое моделирование

Кислые жидкие технологические отходы (ЖТО) Сибирского химического комбината (СХК) захоранивались в верхнемеловые водоносные горизонты, сложенные полимиктовыми песками и отделенные от выше- и нижележащих водоносных горизонтов глинистыми водоупорными слоями. Закачки заданных объемов отходов производились периодически, раз в три месяца. В промежутках между закачками ЖТО и оттесняющий раствор занимали определенные участки пласта, в ходе периодических закачек быстро оттеснялись по пласту от скважины очередной порцией закаченных отходов (табл. 1).

Таблица 1

Vovrouour	0 7 11 2 1	Оттесняющий	ЖТО			
компонент	ед.изм.	раствор				
HNO ₃	г/л	6.26	-			
NaNO ₃	г/л	-	140.39			
Hac	г/л	-	20.54			
Fe	г/л	-	0.34			
Cr	г/л	-	0.37			
Al	г/л	-	0.09			
Ni	г/л	-	0.37			
Mn	г/л	-	0.61			
SiO ₂	г/л	-	0.15			
Р	г/л	-	0.06			
рН		1.25	2.5			
Актиниды						
			U, Pu,			
		-	Np			
Осколки деления						
			90Sr,			
		-	137Cs			

Химический состав ЖТО и оттесняющего раствора

Вследствие радиоактивного распада короткоживущих изотопов стронция-90 и цезия-137 температура в пласте со временем повышалась, достигая 150°С в прискважинной зоне. Оценки повышения температуры приведены в работе [1] и показаны на рис. 1.

Сх	ема	закачек)	ĸ	то			
	HNO ₃	жто		смешение 1ч.НNO ₃ +4ч.ЖТО	смешение 0,85+0,15	р-расг водой 0,5+0,5	рунтовой
ŀ	 + 	· · · · · · · · ·		_ = <u> _</u> =		• V _	
T°C 160- 140 -		27 мес.			_	-	
120 - 100 - 80 - 60 -		<u>12 мес.</u> 9 мес. 6 мес.					
40		3 мес.					

Рис.1. Схема закачек ЖТО и повышение температуры в пласте во времени по данным [1]

Исходный минеральный состав полимиктовых песков						
Минерал	Формула	Среднее сод., %	Размер зерен, мм	F _s (доступность)		
Кварц	SiO ₂	53.77	0.1	0.01		
Альбит	NaAlSi ₃ O ₈	4.13	0.1	0.01		
Микроклин	KAlSi ₃ O ₈	10.14	0.1	0.01		
Биотит	$K(Mg_{0.9}Fe_{2.1})AlSi_3O_{12}H_2$	0.45	0.1	0.01		
Мусковит	$KAl_3Si_3O_{12}H_2$	2.85	0.1	0.01		
Хлорит	$(Fe_{2.5}Mg_{2.5})Al(AlSi_3)O_{10}(OH)_8$	0.17	0.005	0.01		
Иллит	K _{0.6} Mg _{0.25} Al _{2.3} Si _{3.5} O ₁₀ (OH) ₂	7.82	0.005	0.01		
Монтмориллонит	$Si_4(Al_{1.67}Mg_{0.33})O_{10}(OH)_2Ca_{0.117}K_{0.066}Na_{0.033}$	10.51	0.005	0.01		
Каолинит	$Al_2Si_2O_9H_4$	5.26	0.005	0.01		
Сидерит	FeCO ₃	1.04	0.1	0.001		
Родохрозит	MnCO ₃	0.06	0.1	0.001		
Кальцит	CaCO ₃	0.77	0.1	0.001		
Гетит	FeOOH	0.48	0.005	0.01		
Рутил	TiO ₂	0.33	0.1	0.01		
Пиролюзит	MnO_2	0.02	0.01	0.01		
Пирит	FeS ₂	0.06	0.1	0.01		
Сфен	CaTiSiO ₅	0.21	0.1	0.01		
Клиноцоизит	Ca ₂ Al ₃ Si ₃ O ₁₃ H	0.42	0.01	0.01		

Минеральный состав полимиктовых песков приведен в табл. 2.

Таблица 2

Задачей работы является моделирование протекания химических взаимодействий между закаченными растворами и минералами, слагающими пески продуктивого горизонта, во времени и в различных участках пласта для оценки распространения техногенных загрязнений, а также зональности метасоматических изменений в песках по простиранию пласта. Использовалась кинетико-термодинамическая модель, сочетающая последовательный расчет химических равновесий в многокомпонентных закрытых системах с учетом скоростей конгруэнтного растворения минералов в зависимости от температуры, pH, и степени неравновесности минерала раствору. Скорости конгруэнтного растворения минералов вычислялись по уравнению:

$$r_{i} = \left[k_{0H+}(a_{H^{+}})^{n} + k_{0H2O} + k_{0OH-}(K_{W}a_{OH^{-}})^{m}\right] \times \exp\left[\frac{Ea}{R}\left(\frac{1}{T_{0}} - \frac{1}{T}\right)\right] \times \left\{1 - \exp\left[p(\frac{\Delta G}{RT})^{q}\right]\right\}$$

Это уравнение представляет собой комбинацию уравнения Лэйдлера для pH-зависимости скоростей растворения [2], уравнения Аррениуса для температурной зависимости и уравнения теории переходного состояния Ласаги [3]для описания замедления скорости растворения при приближении к насыщению.

Валовые химические составы систем на каждом шаге по времени расчитываются из текущего состава раствора и массы растворившихся за время Δt минералов. Учитывается изменение поверхности зерен минералов в результате растворения и осаждения. При этом равновесный состав раствора, включая pH, а также массы образовавшихся вторичных минералов контролируются химическим равновесием в растворе и его насыщением относительно вторичных минералов. Более детальное описание модели содержится в [4].

Расчеты производились в 18-компонентной системе *O-H-K-Mg-Ca-Al-C-Si-Ti-N-P-S-Cr-Na-Mn-Fe-Ni-Act*. Для того, чтобы блокировать быстрое окисление нитратного азота ацетат-ионом, был введен псевдонезависимый компонент ацетат (Act). Расчеты производились для температур 25-150° С и давления 5 бар. Рассматривались 43 минерала, 64 частицы в водной фазе, газовая фаза, состоящая из $CO_2, H_2O, N_2, O_2, H_2$. Отношение вода/порода составляло 0.076, что соответствует заполнению раствором порового пространства песков. Кинетические константы растворения минералов взяты из работ [5-12].

На рис. 2. показано развитие минеральных преобразований песков в зоне ЖТО во времени по результатам расчетов. Эта зона характеризуется растворением карбонатов (сидерит, родох-

розит), пирита, слюды, хлорита, интенсивным отложением гематита, аппатита, альбита. Из рисунка видно, что pH раствора в контакте с породой возрастает очень быстро,

На рис. 3. показана расчитанная зональность минеральных преобразований песков по простиранию пласта, сформировавшаяся через 2.5 года после начала закачек. В прискважинной зоне, заполненной оттеснящим раствором, происходит интенсивное растворение карбонатов, пирита, микроклина, хлорита, образуется каолинит. По классификации метасоматических изменений эти преобразования можно отнести к зоне кислотного растворения. Зона ЖТО характеризуется интенсивным отложением альбита и гематита. Далее по мере удаления от устья скважины метасоматические изменения затухают.

Рис.2. Развитие минеральных преобразований песков в зоне ЖТО по результатам моделирования

Рис.3. Минеральные преобразования песков по простиранию пласта через 2.5 года после начала закачек. Результаты расчетов

На рис. 4. показана эволюция химического состава растворов одной закачки (ЖТО и оттесняющий раствор) по мере ее продвижения по пласту, происходящая в результате химических взаимодействий растворов с породой, а также в результате постепенного смешения техногенных растворов с природными грунтовыми водами.

Рис.4. Эволюция химического состава растворов одной закачки по мере ее оттеснения по пласту

Проведенные ранее Е.В.Захаровой модельные эксперименты [1] позволяют полагать, что ¹³⁷Сs и ⁹⁰Sr практически полностью сорбируются глинистыми минералами, а уран, плутоний и нептуний соосаждаются с оксидами железа.

Приведенные результаты носят оценочный характер, вследствие неопределенности ряда кинетических факторов, прежде всего, степени доступности зерен различных минералов раствору (параметр Fs) и термодинамических данных по монтмориллонитам.

Работа выполнена при поддержке гранта РФФИ 08-05-00164

Литература

1. Зубков А.А., Макарова О.В., Данилов В.В., Захарова Е.В., Каймин Е.П., Меняйло К.А., Рыбальченко А.И. Техногенные геохимические процессы в песчаеых пластах-коллекторах при захоронении жидких радиоактивных отходов // Геоэкология, инженерная геология, гтдрогеология, геокриология. 2002. №2. С. 133-144.

2. Laidler K.J. Chemical Kinetics // Harper and Row. 1987.

3. Lasaga A.C. Transition state theory. In: Kinetics of Geochemical Processes (eds. A.C. Lasaga and R.J. Kirkpatrick) // Mineralogical Society of America. 1981. V. 8. P. 135-169.

4 Zolotov M.Y., Mironenko M.V. Timing of acid weathering on Mars: A kinetic-thermodynamic assessment // J. Geophys. Res. 2007. V. 112. E07006. doi:10.1029/2006JE002882.

5. Brantley S.L. Reaction kinetics of primary rock-forming minerals under ambient conditions. In: Drever J.I., Holland H.D., Turekian K.K. (Eds.) // Treatise on Geochemistry. V. 5. Elsevier-Pergamon. Oxford. 2004. P. 73-118.

6. Brady P.V., Walther J.V. Controls on silicate dissolution rates in neutral and basic pH solutions at 25°C // Geochim. Cosmochim. Acta. 1989. 53. P. 2823-2830.

7. *Alekseev V.A.* Equations for the dissolution reaction rates of montmorillonite, illite, and chlorite // Geochemistry Intl. 2007. 45. No 8. P. 770-780.

8. Алексеев В.А. Кинетика взаимодействия породообразующих минералов с водными растворами. Геологическая эволюция и самоорганизация систем вода-порода. Т.1. (Под ред. Шварцева С.Л.) // Издательство СО РАН. Новосибирск. 2005. С. 71-107. 9. Sidhu P.S., Gilkes R.J., Coenell R.M., Posner A.M., Qurik J.P. Dissolution of iron oxides and oxyhydroxides in hydrolic and perhydrolic acids // Clays and Clay Minerals. 1981. 29. P. 269-276.

10. Rimstidt J.D., Barnes H.L. The kinetics of silica-water reactions // Geochim. Cosmochim. Acta. 1980. 44. P. 1683-1699.

11. Icenhower J.P., Dove P.M. The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength // Geochim. Cosmochim. Acta. 2000. 64. P. 4193-4203.

12. Brady P.V., Walther J.V. Kinetics of quartz dissolution at low temperatures // Chem. Geol. 1990. 82. P. 253-264.

Вестник Отделения наук о Земле РАН - №1(27) 2009

Информационный бюллетень Ежегодного семинара по экспериментальной минералогии, петрологии и геохимии 2009 года (ЕСЭМПГ-2009)

URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2009/informbul-1_2009/geoecol-10.pdf Опубликовано 1 сентября 2009 г.

© Вестник Отделения наук о Земле РАН, 1997 (год основания), 2009 При полном или частичном использовании материалов публикаций журнала,

ссылка на «Вестник Отделения наук о Земле РАН» обязательна