Key words: underground bureal of technological waste, kinetic-thermodynamic modeling

Acid liquid waste (LW) of Siberian Chemical Industrial Complex were pumped into Carbon waterbearing horizons, consisted of polymineral sands. The horizons are isolated by clay waterproof layers. Pumping of LW took place periodically, every three month. Chemical compositions of LW and a press back solution are shown in tab.1.

Table 1

Chemical composition of LW and a press-back solution							
		Press-back					
Component	units.	solution	LW				
HNO ₃	g/l	6.26	-				
NaNO ₃	g/l	-	140.39				
Hac	g/l	-	20.54				
Fe	g/l	-	0.34				
Cr	g/l	-	0.37				
Al	g/l	-	0.09				
Ni	g/l	-	0.37				
Mn	g/l	-	0.61				
SiO ₂	g/l	-	0.15				
Р	g/l	-	0.06				
рН		1.25	2.5				
Actinides							
	- U, Pu, Np		U, Pu, Np				
Short-living isotopes							
		-	90Sr, 137Cs				

Chemical composition of LW and a press-back solution

Table 2

Mineral composition of sands						
Min anal	Eormula	Average	Grain	Fs		
Ivimerai	Formula	content, %	size, mm	(exposure)		
Quartz	SiO ₂	53.77	0.1	0.01		
Albite	NaAlSi ₃ O ₈	4.13	0.1	0.01		
Microcline	KAlSi ₃ O ₈	10.14	0.1	0.01		
Biotite	$K(Mg_{0.9}Fe_{2.1})A1Si_3O_{12}H_2$	0.45	0.1	0.01		
Muskovite	$KAl_3Si_3O_{12}H_2$	2.85	0.1	0.01		
Chlorite	(Fe _{2.5} Mg _{2.5})Al(AlSi ₃)O ₁₀ (OH) ₈	0.17	0.005	0.01		
Illite	K _{0.6} Mg _{0.25} Al _{2.3} Si _{3.5} O ₁₀ (OH) ₂	7.82	0.005	0.01		
Montmorillonite	$Si_4(Al_{1.67}Mg_{0.33})O_{10}(OH)_2Ca_{0.117}K_{0.066}Na_{0.033}$	10.51	0.005	0.01		
Kaolinite	$Al_2Si_2O_9H_4$	5.26	0.005	0.01		
Syderite	FeCO ₃	1.04	0.1	0.001		
Rodochrosite	MnCO ₃	0.06	0.1	0.001		
Calcite	CaCO ₃	0.77	0.1	0.001		
Goetite	FeOOH	0.48	0.005	0.01		
Rutile	TiO ₂	0.33	0.1	0.01		
Pyrolusite	MnO ₂	0.02	0.01	0.01		
Pyrite	FeS ₂	0.06	0.1	0.01		
Titanite	CaTiSiO ₅	0.21	0.1	0.01		
Clinozoisite	Ca ₂ Al ₃ Si ₃ O ₁₃ H	0.42	0.01	0.01		

Because of radioactive decay of ⁹⁰Sr and ¹³⁷Cs, temperature in the sand bed increased up to 150°C [1].

Fig.1. Scheme of pumping LW and temperature increase in the sand bed in time according to [1]

The goal of the study is a computer modeling of passing of chemical interactions of LW with rockforming minerals to estimate expansion of contaminants and zonality of mineral alteration in sand beds. We applied a kinetic-thermodynamic model, which combines a consequtive calculation of chemical equilibria with accounting rates of congruent mineral dissolution depending on temperature, pH, and a degree of mineral undersaturation. Rates of mineral dissolution were calculated using the following equation

$$r_{i} = \left[k_{0H+}(a_{H^{+}})^{n} + k_{0H2O} + k_{0OH-}(K_{W}a_{OH^{-}})^{m}\right] \times \exp\left[\frac{Ea}{R}\left(\frac{1}{T_{0}} - \frac{1}{T}\right)\right] \times \left\{1 - \exp\left[p(\frac{\Delta G}{RT})^{q}\right]\right\},$$

which is a combination of Laidler's equation for pH-dependence of dissolution rates [2], Arrhenius's equation for temperature dependence, and Lasaga's equation of transition state theory [3].

Bulk chemical compositions of systems at every time step t were calculated based on current solution composition and masses of dissolved minerals during time Δt . Change in mineral surface aria due to dissolution or precipitation was taken into account. More detailed description of the model is in [4].

We considered 18-component system O-H-K-Mg-Ca-Al-C-Si-Ti-N-P-S-Cr-Na-Mn-Fe-Ni-Act. In order to block a fast oxidation of nitrate by acetate, we introduce a new "component" acetate (Act). Calculations were performed for temperatures 25-150° C and pressure of 5 bar, 43 minerals, 64 aqueous species, and 5 gas species ($CO_2, H_2O, N_2, O_2, H_2$) were taken into account. Water/rock mass ratio was equal to 0.076, which corresponds to full filling of pore space of the sand. Kinetic constants of mineral dissolution were taken from [5-12].

In fig. 2 the calculated mineral transformations in LW zone in time are shown. One can note dissolution of carbonates, pyrite, micas, chlorite, and deposition of hematite, appatite, and albite. Solution pH increases very fast in contact with the rock

The calculated zonality of mineral transformation of sands after 2.5 years of pumping is shown in fig. 3. In the near-well zone, which was filled by press-back solution of HNO_3 , dissolution of carbonates, pyrite, microcline, and chlorite took place. Kaolinite was formed.

Fig.2. Alteration of the sand in LW zone in time. Results of modeling

Fig.3. Zonality of alteration of sands. Results of calculations

The evolution of chemical composition of solution during it's moving is shown in fig. 4. The changes are due both to solution-rock chemical interactions and a gradual mixing with natural underground water.

Fig.4. Change of a chemical composition of LW during it's moving in sand bed

Based on results of model experiments of E. Zakharova [1], we can suppose that 137 Cs μ 90 Sr were almost completely sorbed by clay minerals, and uranium, plutonium, and neptunium coprecipitated with ferric oxides.

Because of uncertainty of a number of kinetic parameters, especially degrees of exposure of mineral grains to aqueous solution, and thermodynamic data on montmorillonites, the results should be supposed as very preliminary.

The work was supported by Russian Foundation for Basic Research, grant 08-05-00164

References

1. Zubkov A A., Makarova O.V., Danilov V.V., Zakharova E.V., Kaymin E.P., Meniaylo K.A., Rybalchenko A.I. Technogenic geochemical processes in sand beds-collectors at bureal of liquid radioactive waste // Geology. Engineering geology, hydrogeology, geocryology. 2002. No 2. P. 133-144.

2. Laidler K.J. Chemical Kinetics // Harper and Row. 1987.

3. Lasaga A.C. Transition state theory. In: Kinetics of Geochemical Processes (eds. A.C. Lasaga and R.J. Kirkpatrick) // Mineralogical Society of America. 1981. V. 8. P. 135-169.

4. Zolotov M.Y., Mironenko M.V. Timing of acid weathering on Mars: A kinetic-thermodynamic assessment // J. Geophys. Res. 2007. V. 112. E07006. doi: 10.1029/2006JE002882.

5. Brantley S.L. Reaction kinetics of primary rock-forming minerals under ambient conditions. In: Treatise on Geochemistry. Drever J.I. Holland H.D., Turekian K. (Eds.) // Elsevier-Pergamon. Oxford. 2004. V. 5. P. 73-118.

6. Brady P.V., Walther J.V. Controls on silicate dissolution rates in neutral and basic pH solutions at 25°C // Geochim. Cosmochim. Acta. 1989. No 53. P. 2823-2830.

7. *Alekseev V.A.* Equations for the dissolution reaction rates of montmorillonite, illite, and chlorite // Geochemistry Intl. 2007.45. No 8. P. 770-780.

8. Alekseev V.A. Kinetics of reactions of rock-forming minerals with aqueous solutions. In: Geological Evolution and Self-Organization of the Water-Rock System. Shvartsev, S.L. (Ed.) // Publishing House of the Siberian Branch of Russian Academy of Sciences. Novosibirsk. 2005. V. 1 P. 71-107 (in Russian).

9. Sidhu P.S., Gilkes R.J., Coenel, R.M., Posner A.M., Qurik J.P. Dissolution of iron oxides and oxyhydroxides in hydrolic and perhydrolic acids // Clays and Clay Minerals. 1981. No 29. P. 269-276.

10. Rimstidt J.D., Barnes H.L. The kinetics of silica-water reactions // Geochim Cosmochim. Acta. 1980. No 44. P. 1683-1699.

11. Icenhower J.P., Dove P.M. The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength // Geochim. Cosmochim. Acta. 2000. No 64. P. 4193-4203.

12. Brady P.V., Walther J.V. Kinetics of quartz dissolution at low temperatures // Chem. Geol. 1990. No 82. P. 253-264.

Electronic Scientific Information Journal "Vestnik Otdelenia nauk o Zemle RAN" № 1(27) 2009 ISSN 1819–6586

Informational Bulletin of the Annual Seminar of Experimental Mineralogy, Petrology and Geochemistry – 2009 URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2009/informbul-1_2009/geoecol-10e.pdf

Published on July, 1, 2009 © Vestnik Otdelenia nauk o Zemle RAN, 1997-2009 All rights reserved