Электронный научно-информационный журнал «Вестник Отделения наук о Земле РАН» №1(27)′2009 ISSN 1819 - 6586

URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2009/informbul-1 2009/geoecol-3.pdf

ВАРИАЦИИ ЭЛЕМЕНТНОГО СОСТАВА ПАТОГЕННЫХ МИНЕРАЛОВ РОТОВОЙ ПОЛОСТИ ЧЕЛОВЕКА

Бельская Л.В., Голованова О.А. (хим. ф-т ОмГУ)

LudaB2005@mail.ru

Ключевые слова: элементный состав, РФА-СИ, ИСП-АЭС, патогенные биоминералы, зубные и слюнные камни, ротовая жидкость

Изучение биоминералов и процесса их образования в организме человека является важнейшим направлением науки биоминералогии. Это актуально при решении проблем, связанных с образованием патогенных минералов в организме человека, приводящих к различным заболеваниям. Роль микроэлементов, в том числе и катионов металлов, в процессе формирования патогенных биоминералов в настоящее время до конца не изучена.

Особый интерес представляет содержание в биоминеральных образованиях металлов, в том числе марганца и железа. Так, марганец для живых организмов имеет жизненно важное значение: он активизирует многие ферментативные процессы (входит в состав пируваткарбоксилазы и аргиназы), необходим для образования гемоглобина, стимулирует синтез холестерина и жирных кислот и т.д. Железо входит в состав дыхательных пигментов, в том числе гемоглобина, участвует в процессах связывания и переноса кислорода к тканям; стимулирует функцию кроветворных органов; применяется в качестве лекарственного средства при анемиях и некоторых других патологических состояниях. Однако при неблагоприятной экологической ситуации элементы в избытке поступают в организм человека, занимают позиции кальция и магния в органических и неорганических структурах, образуя соединения, которые могут служить зародышами патогенных минеральных образований.

Цель работы - выявить особенности микроэлементного состава патогенных образований различной локализации и камнеобразующей среды в зависимости от местных природных и техногенных факторов среды обитания на примере Омского региона.

Материал и методы. Объектом исследования являлась коллекция из 115 зубных, 13 слюнных камней и 120 образцов ротовой жидкости. Все исследуемые образцы камней были подвергнуты анализу на станции энергодисперсионного рентгено-флуоресцентного элементного анализа Центра синхротронного излучения ИЯФ СО РАН (г. Новосибирск). Эмиссионные спектры исследуемых проб возбуждались пучком поляризованного монохроматизированного излучения энергией 25 кэВ. Образцы готовились прессованием порошка в таблетки весом 30 мг и диаметром 5 мм с поверхностной плотностью 0.15 г/см². Использовались два уровня энергии возбуждения:

- 22 кэВ для количественного определения Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Pb, Th, U;
 - 42 кэВ для количественного определения Ag, Cd, In, Sn, Sb, Te, I, Cs, Ba, La и Ce.

Расчет содержания элементов проводился методом внешнего стандарта. Образцами сравнения служили стандарты горных пород: СТ-1а (трапп), СА-1 (алевролит), СГ-2 (гранит), СИ-1 (известняк), ВСR-32 (фосфорит). Нормировочные коэффициенты для расчета содержаний элементов, не аттестованных в указанных стандартах, были получены интерполяцией соответствующих величин для соседних групп элементов. Пределы обнаружения элементов при загрузке спектрометрического тракта с частотой $10~\text{к}\Gamma\text{ц}$ и временем измерения 1000~секунд составляют $(0,1-2,0)\cdot10^{-4},\,\%$. Обработка эмиссионных спектров производилась с помощью специализированной программы. При количественном расчете использовался метод "внешнего стандарта". Погрешность определений элементов находилась в пределах 2-5 отн.%.

Элементный состав образцов ротовой жидкости определялся методом атомно-эмиссионной спектроскопии с индуктивно связанной плазмой (АЭС-ИСП). Измерения проводились на ИПС-спектрометре OPTIMA 2000 DV (Perkin Elmer, Германия). Обработку результатов производилась с использованием программного обеспечения спектрометра. При количественном расчете использовался метод градуировочного графика.

Результаты. Анализ полученных результатов по определению элементного состава зубных и слюнных камней (табл. 1, 2) показывает, что микроэлементы K, Zn, Ba, Zr, Rb, Mn, Fe, Cu, Ti, V, Ni и т.д. концентрируются в камнях. Высокое содержание перечисленных элементов в образцах, возможно, объясняется их изоморфным внедрением в апатит - основную минеральную компоненту зубных и слюнных камней человека. С учетом возможных изоморфных замещений формулу стехиометрического апатита можно представить в виде: $Me_{10}(XO_4)_6Y_2$, где $Me = Ca^{2+}$, Mn^{2+} , Mn^{3+} , Sr^{2+} , Ba^{2+} , Na^+ , Rb^+ , Y^{3+} ; $X=P^{5+}$, Si^{4+} , S^{6+} , Mn^{7+} , As^{5+} ; $Y=F^-$, CI^- , OH^- , O^2 -, таким образом для апатита характерен как гетеровалентный, так и изовалентный изоморфизм. Возможность изоморфного внедрения объясняется близостью ионных радиусов элементов: $r(Ca^{2+})=0,106$ нм, $r(Sr^{2+})=0,127$ нм, $r(Ba^{2+})=0,143$ нм, $r(Mn^{2+})=0,091$ нм, $r(Zn^{2+})=0,083$ нм, $r(Na^+)=0,098$ нм, $r(K^+)=0,133$ нм, $r(Rb^+)=0,149$ нм, $r(Ni^{2+})=0,078$ нм, $r(Cu^+)=0,096$ нм, $r(Ag^{2+})=0,113$ нм и $r(Cl^-)=0,181$ нм, $r(Br^-)=0,196$ нм, $r(\Gamma)=0,220$ нм [1].

 Таблица 1

 Содержание микроэлементов в зубных камнях жителей Омского региона, масс.%

	willie military and a system of the system o			
Элемент	Содержание элемента (экспе-	Содержание элемента		
	риментальные данные)	(лит. данные [2])		
Fe	$(8.19\pm2.57)\cdot10^{-3}$	$(1.46\pm0.1)\cdot10^{-2}$		
Ti	(7.62±3.63)·10 ⁻³	$(6.4\pm3.3)\cdot10^{-3}$		
Mn	(2.41±0.73)·10 ⁻³	$(1.3\pm0.085)\cdot10^{-3}$		
V	$(4.27\pm1.43)\cdot10^{-3}$	(2.4±0.16)·10 ⁻⁵		
Ni	$(1.60\pm0.59)\cdot10^{-3}$	$(0.3\pm0.016)\cdot10^{-3}$		
Cu	$(1.53\pm0.61)\cdot10^{-3}$	$(1.6\pm0.078)\cdot10^{-4}$		
Zn	(2.52±0.53)·10 ⁻²	$(1.6\pm0.11)\cdot10^{-3}$		

Сравнение полученных экспериментальных данных по зубным камням с литературными (табл. 1) позволяет выделить элементы, содержание которых характерно для Омского региона: Мп - на 46%; Ni - на 81% больше, чем по данным [2]. Значительно превышено содержание V (в 178 раз), Cu (в 95 раз) и Zn (в 16 раз). В зубных камнях жителей г. Омска обнаружены также Ag, Sn, I, Br и Rb.

 Таблица 2

 Содержание микроэлементов в слюнных камнях жителей Омского региона, масс.%

Элемент	Содержание элемента, (экспериментальные данные)	Содержание элемента, (по данным [2])
Fe	(7.37±2.63)·10 ⁻³	(1.00±0.09)·10 ⁻²
Ti	$(5.65\pm2.82)\cdot10^{-2}$	$(1.30\pm0.13)\cdot10^{-3}$
Mn	-	$(2.30\pm0.13)\cdot10^{-5}$
V	$(1.71\pm0.72)\cdot10^{-2}$	$(1.30\pm0.34)\cdot10^{-3}$
Ni	$(1.18\pm0.61)\cdot10^{-3}$	$(2.60\pm0.18)\cdot10^{-4}$
Cu	$(1.84\pm0.88)\cdot10^{-3}$	$(1.50\pm0.08)\cdot10^{-4}$
Zn	$(1.28\pm0.76)\cdot10^{-2}$	$(1.4\pm0.1)\cdot10^{-3}$

Следует отметить, что уровни содержания элементов зависят от условий окружающей среды, и вследствие этого отмечается существенный разброс величин, измеренных в различных регионах. Таким образом, повышенное содержание микроэлементов в дентолитах, возможно, обусловлено спецификой Омского региона.

Аналогичные закономерности получены и для слюнных камней жителей Омского региона (табл. 2): Fe - на 26% меньше, а Ni - на 78 % больше, чем по данным [2]. Значительно превышает литературные значения содержание V (в 43 раза), Cu (в 12 раз) и Zn (в 9 раз).

Ряд авторов указывают на важную роль слюны в образовании зубного камня. Смешанная слюна представляет собой наиболее вероятный источник поступления минеральных компонентов, в том числе и микроэлементов, в состав зубных отложений.

С целью установления возможности поступления микроэлементов в состав камней проведено определение элементного состава ротовой жидкости с помощью атомно-эмиссионного анализа с индуктивно-связанной плазмой (ИСП-АЭ) (табл. 3).

Таблица 3 Элементный состав ротовой жидкости в норме и в условиях камнеобразования в полости рта, мг/л

Элемент	Контрольная группа	Норма	Камнеобразование в
	(эксп. данные)	(лит. данные [3])	полости рта
Fe	0.278±0.041	0.11-0.19	0.399 ± 0.185
Mn	0.050±0.014	0.009-0.011	-
Zn	0.476±0.183	-	1.082±1.010
Cu	0.342±0.314	0.007-0.018	0.054±0.033

В ходе исследования были выделены две группы: группа №1 - пациенты, имеющие зубные отложения в полости рта (8 человек, 57%); группа №2 - контрольная (6 человек, 43%). Взятую в качестве сравнения группу лиц, резистентных (устойчивых) к заболеваниям, составили люди с одинаковым соматическим статусом «практически здоровые», а также без заболеваний пародонта и слизистой оболочки полости рта.

По результатам проведенного эксперимента микроэлементы Zn и Cu обнаружены во всех проанализированных образцах, а Fe, Mn, Ni и Al в большинстве образцов. При этом содержание перечисленных микроэлементов увеличивается в условиях камнеобразования в полости рта. По данным Обь-Иртышского межрегионального территориального управления по гидрометеорологии и мониторингу окружающей среды, при оценке качества поверхностных вод на территории Омской области установлено, что вода р. Иртыш в створе Омск характеризуется как «грязная» (УКИЗВ - удаленный комбинаторный индекс загрязненности воды - 3,66) [4]. Во всех створах Омска критическим показателем загрязненности воды являются соединения меди (12 - 14,7 ПДК), а также железа (2,2 ПДК), цинка (1 - 2,1 ПДК), марганца (0,9 - 2,2 ПДК). Для реки Омь величины УКИЗВ варьируются от 4,33 до 4,94, при этом содержание основных загрязняющих веществ в контролируемых створах реки Оми составило: соединений железа 2,2 - 3,2 ПДК, меди 13,3 - 19,3 ПДК, цинка 1 - 1,9 ПДК, марганца 8 - 19,9 ПДК. Также отмечены случаи экстремально высокого загрязнения соединениями марганца 60,6 - 113,8 ПДК и меди 33 - 44 ПДК.

По сравнению ряда средних концентраций химических элементов в зубных камнях жителей г. Омска: Zn > Fe > Cu > Ni > Mn с рядом средних концентраций данных элементов в ротовой жидкости: Zn > Fe > Cu > Mn > Ni видно, что последовательность расположения элементов в рядах одинакова и, следовательно, вероятным источником поступления микроэлементов в состав зубных и слюнных отложений является слюна человека.

Известно, что слюна представляет собой структурированную биологическую жидкость, весь объем которой распределен между мицеллами - коллоидными образованиями. Их ядра состоят из молекул фосфата кальция и окружены водно-белковыми оболочками. Вероятно, при избыточном поступлении микроэлементов в состав ротовой жидкости происходит образование хелатных комплексных соединений с аминокислотами, входящими в состав белка, и разрушение защитных оболочек коллоидных мицелл. В качестве примера можно привести значения ступенчатых констант устойчивости хелатных комплексов никеля с глицином (K_1 =1,4·10⁶, K_2 =8,9·10⁴). При повышенной концентрации катионов металлов мицеллы теряют устойчивость и коагулируют, что приводит к нарушению структурных и минерализующих свойств слюны и образованию камней в ротовой полости человека.

Заключение. Таким образом, можно предположить, что микроэлементный состав зубных и слюнных камней определяется средой проживания пациента и особенностью обменных процессов в его организме.

Изучение образования и роста минералов с четко регламентируемыми условиями человеческого организма расширяет представление о генезисе минералов и способствует развитию общей теории минералообразования.

Литература

- *1. Эмсли Дж.* Элементы // М.: Мир. 1993. 256c.
- 2. Ткаленко $A.\Phi$. Влияние физико-химических характеристик слюны, слюнных и зубных отложений на исход лечения больных слюннокаменной болезнью. Автореф. канд. дис. // М.: 2004. С. 16-24.
- 3. Гожая Л.Д. Содержание железа, меди, марганца в слюне человека в «норме», при некоторых стоматологических и др. заболеваниях. Автореф. канд. дис. // М.: 1966. С. 7-9.
- 4. Доклад о состоянии и об охране окружающей среды Омской области в 2006 году // Омск. 2007. 288c.

Вестник Отделения наук о Земле РАН - №1(27) '2009

Информационный бюллетень Ежегодного семинара по экспериментальной минералогии, петрологии и геохимии 2009 года (ЕСЭМПГ-2009)

URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2009/informbul-1 2009/geoecol-3.pdf

Опубликовано 1 сентября 2009 г.

© Вестник Отделения наук о Земле РАН, 1997 (год основания), 2009 При полном или частичном использовании материалов публикаций журнала, ссылка на «Вестник Отделения наук о Земле РАН» обязательна