Электронный научно-информационный журнал «Вестник Отделения наук о Земле РАН» №1(27)'2009 ISSN 1819 - 6586 URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2009/informbul-1 2009/hydroterm-23.pdf

ВОЗМОЖНОСТИ ЭКСПЕРИМЕНТАЛЬНО-РАСЧЕТНОГО МЕТОДА ПО ПРОГНОЗИРОВАНИЮ ФОРМ ЗОЛОТА В СУЛЬФИДАХ Лаптев Ю.В., Широносова Г.П., Новикова С.П. (ИГМ СО РАН)

laptev@uiggm.nsc.ru; факс: (383) 335-64-58; тел.: (383) 333-30-26

Ключевые слова: золото, формы нахождения, адсорбционные равновесия, сульфидообразование

Впервые для повышенных температур (200 и 250°С) с использованием результатов наших экспериментов по растворимости золота и его осаждению на пирит в сульфидно-хлоридных кислых растворах [1] проведено компьютерное моделирование процессов концентрирования золота при гидротермальном сульфидообразовании с дополнительным учетом адсорбционных равновесий. В качестве термодинамической основы принята концепция Сахай и Сверджински [2] в варианте существования на поверхности сорбента однопозиционных и энергетически эквивалентных вакансий для образования поверхностного комплекса заданной стехиометрии.

По этой методологии предложен вариант перехода от экспериментально изученного равновесия Au_(p-p)↔Au_(≡FeS2) с валовым коэффициентом распределения золота между пиритом и раствором $K_D = C_{Au (\equiv FeS2)}/C_{Au(p-p)}$ к адсорбционному равновесию $\equiv FeS_2 + Au(HS)^{\circ} \leftrightarrow \equiv FeS_2 \cdot Au(HS)$ с кажущейся константой $K_A = m_{\equiv FeS2 \cdot Au(HS)} / m_{Au(HS)^\circ} m_{\equiv FeS2}$. Концентрация Au(HS)° рассчитывалась исходя из опытных данных по общему содержанию растворенного золота и по ее долевому участию в суммарном балансе $Au(HS)^{\circ} + Au(HS)_{2}^{-}$ для кислых $H_{2}S$ -содержащих растворов (база термодинамических данных UNITHERM, пакет программ HCh [3]). Состав поверхностного комплекса ≡FeS₂·Au(HS) отвечал гипотетическим, но не противоречивым представлениям о механизме закрепления золота на поверхности пирита [4, 5]. Кроме того, неметаллическое состояние переосажденного золота в условиях наших экспериментов определено спектроскопическими методами [6]. Компонент равновесия ≡FeS₂ является формальным параметром, имеющим смысл количества вакансий на площади поверхности пирита. В соответствии с аппаратом описания адсорбционных равновесий все концентрации его участников приведены к шкале моляльности. Принятые формально значения m_{≡FeS2} соответствовали величинам 1, 2, 4 m в прямой пропорции от количеств пирита (8, 16 и 32 г FeS₂ на 1 кг H₂O). Полученные значения константы адсорбционного равновесия К_D и К_A для температур 200 и 250°С приведены в табл.1.

Таблица 1

$K_D = C_{Au (\equiv FeS2)} / C_{Au(p-p)}$									
t, °C	C _{Au (≡FeS2)} , ppm	C _{Au(p-p)} , ppm	m _{≡FeS2}	K _D					
200	126	6,1	-	20±10					
250	500	6,0	-	80±20					
$K_A = m_{\equiv FeS2 \cdot Au(HS)}/m_{\equiv FeS2} m_{Au(HS)^\circ}$									
t, °C	m _{≡FeS2•Au(HS)}	m _{Au(HS)°}	m _{≡FeS2}	K _A					
200	5,12·10 ⁻⁶	3,85·10 ⁻⁶	1	1,33					
250	$2.03 \cdot 10^{-5}$	1.71.10-5	1	1.19					

Величины K_D и K_A равновесия пирит-раствор для 200 и 250°С при следующих условиях опытов: $m_{H2S} = 0.1$; $m_{NaCl} = 0.17$; $m_{S8(p-p)} = n \ 10^{-4}$; pH 3.8; FeS₂, г / 1 кг H₂O = 8 ÷ 32; Au_(мет) – избыток

Примечание: Приведено значение K_A по данным для опыта при количестве пирита 8 г/ 1 кг H_2O ($m_{\equiv FeS2} = 1$)

Через полученные значения K_A далее вычислялись свободные энергии адсорбированного комплекса по уравнению $G^{\circ}_{\equiv FeS2 \cdot Au(HS)} = -RTlnK_A + G^{\circ}_{Au(HS)^{\circ}} + G^{\circ}_{\equiv FeS2}$. При этом величины $G^{\circ}_{\equiv FeS2}$ для функциональной группы позиций $\equiv FeS_2$ были приняты равными нулевому значению для обеих температур. Подготовленные таким образом значения $G^{\circ}_{\equiv FeS2 \cdot Au(HS)}$ оказались равными 0,79 и -7,88 кДж/моль для 200 и 250°С, соответственно.

В качестве прообраза расчетной модели по концентрированию золота в различных формах приняты условия образования сульфидных построек в гидротермальном поле Логачев (CAX) при упрощенном составе системы, включающей Au + FeS₂ + H₂S + NaCl + H₂O. Так же как и

при проведении экспериментов для дозированного окисления сероводорода [1] в расчетах дополнительно учитывалось заданное количество окисленной формы азота (HNO₃), которая практически полностью восстанавливалась до растворенного газа N₂(аq). Растворенная форма молекулярной серы S₈°(aq) была выбрана в качестве показателя степени окисления сероводорода и компонента системы для расчета фугитивности серы по равновесию S₈°(aq) \leftrightarrow 4S₂(gas). Величины G° для S₈°(aq) в форме регрессионного уравнения HKF были получены нами путем обработки имеющихся данных по растворимости элементарной серы S(эл) в воде [7, 8]. Исходный состав системы: FeS₂ – от 8 до 320 г/кг H₂O; Au – 9,25 и 7,1 мг/кг H₂O для 200 и 250°C, соответственно; H₂S – 0,1m; NaCl – 0,17m; HNO₃ – от 1,56 10⁻³ до 10⁻¹⁰m.

В качестве первого приближения расчеты выполнены для условий проведения экспериментов (табл. 2) при составе системы с минимальным количеством пирита (8 г/кг H₂O) и с максимальным содержанием окислителя ($m_{HNO3} = 1,56 \ 10^{-3}$). По данным из таблицы видно, что происходит глубокое перераспределение золота между раствором и его осажденными формами Au(met) и Au(ads), причем с большим преимуществом в пользу поверхностного комплекса (почти 100%). При этом прогнозируемые расчетом содержания адсорбированного золота приближены к экспериментальным значениям для наших опытов с избытком Au(met): 159 ppm относительно 126 ppm для 200°C и 350 ppm относительно 500 ppm для 250°C (табл. 1).

Таблица 2

Результаты расчета составов растворов и равновесных с ними содержаний золота в пирите в металлической Au(met) и адсорбированной Au(ads) формах для t=200 и 250°C (P=P_{psv}) при количестве FeS₂ равному 8 г/кг H₂O

t,	m _{H2S} ,	m _{S8°} ,	m _{Au(HS)°} ,	т _{Аи(НS)2-} ,	pН	Au(met),	Au(ads),	Au(ads)			
°C	$n \cdot 10^{-2}$	n·10 ⁻⁴	$n \cdot 10^{-5}$	n·10 ⁻⁵		ppm	ppm	/Au(total)·100%			
200	9,6	3,9	0,50	3,53	3,6	3,18	159	98,0			
250	9,7	2,3	1,2	0,97	3,5	3,03	350	99,1			

Рис.1. Расчетные зависимости по влиянию температуры на равновесные содержания адсорбированной формы золота в пирите в присутствии Au(мет) для различных ассоциаций сульфидов. Обозначения: Ру - пирит; Ро - пир-

ротин; Cb - кубанит; Cp - халькопирит; Bn - борнит; Id - идаит

Последующие расчеты в этой же системе проведены с уменьшением количеств окислителя при снижении фугитивности серы до значений, отвечающих существованию совместно с пиритом буферных ассоциаций идаит-борнит, борнит-халькопирит, халькопирит-кубанит-пирротин по данным [9]. По результатам этих расчетов было установлено (рис. 1), что в температурном интервале 200 - 250°C при уменьшении фугитивности серы для 0,1 молярного раствора H_2S должно происходить значительное уменьшение прогнозируемых содержаний адсорбированного на пирите золота. Его максимальные концентрации (выше 200 ррт) соответствуют условиям нашего эксперимента и области возможного существования идаита $Cu_5Fe_{<1}S_6$ (кривая 1). С переходом в поле устойчивости борнита Cu_5Fe_4 (кривая 2) расчетные содержания Au(ads) отвеча-

ют интервалу 200 - 20 ppm. Кривая 3 с концентрациями золота 4 - 0,2 ppm оказалась соответствующей буферной ассоциации пирит - борнит - халькопирит. Ничтожно малые содержания золота (< 0,1 ppm) характерны для условий существования пирита с пирротином и кубанитом (кривая 4).

Положение изотерм (200 и 250°С) предельных содержаний Au(ads) относительно фугитивности серы (рис. 2) свидетельствует о ее существенно большем влиянии по сравнению с температурным фактором. Наиболее реальные для природных условий концентрации золота в «невидимой» форме (1 – 10 ppm) для этих температур отвечают значениям фугитивности серы порядка $10^{-13} - 10^{-11}$ бар. При устойчивом существовании в этих условиях пирит-борнитовой ассоциации она должна быть более обогащена скрытым золотом по сравнению с ассоциациями включающими пирит, пирротин, халькопирит, кубанит.

Рис.2. Рассчитанные изотермические зависимости максимальных концентраций адсорбированного на пирите золота в равновесии с Au(мет) от фугитивности серы. На кривые нанесены точки f_{S2} для равновесных ассоциаций сульфидов по данным [9] и соединяющие их штрих линии для t=200 и 250°С. Выделена затемнением область наиболее реальных концентраций золота в пирите - 1 ÷10 ppm. Обозначения: Ру пирит; Ро - пирротин; Сb - кубанит; Ср - халькопирит; Bn - борнит; Id - идаит

Эту закономерность можно прогнозировать при изменении состава сульфидных агрегатов в разрезе крупной трубы черного курильщика Анна-Луиза (поле Логачев), а также в постройках Рейнбоу [10], где происходит контрастный переход от ковеллина к борниту с халькопиритом и далее к изокубаниту в направлении от внешней части к внутренней. Уменьшение фугитивности серы в этом ряду сульфидных ассоциаций (как следствие снижения степени окисленности H₂S – содержащих растворов от области контакта с морской водой) должно способствовать уменьшению доли химически связанного «невидимого» золота в глубине океанических построек.

Гранты РФФИ 06-05-65042 и 09-05-00862

Литература

1. Лаптев Ю.В., Розов К.В. Взаимодействие золота с поверхностью сульфидов как фактор его концентрирования при гидротермальном рудообразовании // ДАН. 2006. №5. С. 663-667.

2. Sahai N., Sverjensky D.A. Solvation and electrostatic model forspecific electrolyte adsorption // Geoch. et Cosmoch. Acta. 1997. V. 61. No 14. P. 2827-2848.

3. Шваров Ю.В. Алгоритмизация численного равновесного моделирования динамических геохимических процессов // Геохимия. 1999. № 6. С. 646-652.

4. Widler A.M., Seward T.M. The adsorption of gold (I) hydrosulphide complexes by iron sulphide surfaces // Geoch. et Cosmoch. Acta. 2002. V. 66. P. 383-402.

5. Fadeev V.V., Kozerenko S. V. Gold in Processes of Pyrite Formation. Part 1. Gold Accumulation during Pyrite Formation // Geoch. Intern. 1999. V. 37. No 12. P. 1182-1187.

6. Лаптев Ю.В., Розов К.Б., Широносова Г.П. Экспериментальное и термодинамическое моделирование процессов концентрирования золота при образовании сульфидов в океанических гидротермах. - Геология морей и океанов // М.: ГЕОС. 2007. Т. 2. С. 44-46.

7. Лаптев Ю.В., Сиркис А.Л., Колонин Г.Р. Сера и сульфидообразование в гидрометаллургических процессах // Новосибирск. Наука. 1987. 159с.

8. Дадзе Т.П., Каширцева Г.А., Орлов Р.Ю., Сорокин В.И. Свободная энергия Гиббса образования водных частиц системы сера - вода. - Экспериментальное и теоретическое моделирование процессов минералообразования // М.: Наука. 1998. С. 387-393.

9. Lusk J., Bray D. M. Phase relations and the electrochemical determination of sulfur fugacity for selected reactions in the Cu–Fe–S and Fe–S systems at 1 bar and temperatures between 185 and 460°C // Chemical Geology. 2002. V. 192. P. 227-248.

10. Викентьев И.В. Условия формирования и метаморфизма колчеданных руд // М.: Научный мир. 2004. 338с.

Вестник Отделения наук о Земле РАН - №1(27) 2009 Информационный бюллетень Ежегодного семинара по экспериментальной минералогии, петрологии и геохимии 2009 года (ЕСЭМПГ-2009) URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2009/informbul-1_2009/hydroterm-23.pdf

Опубликовано 1 сентября 2009 г.

© Вестник Отделения наук о Земле РАН, 1997 (год основания), 2009 При полном или частичном использовании материалов публикаций журнала, ссылка на «Вестник Отделения наук о Земле РАН» обязательна