Электронный научно-информационный журнал «Вестник Отделения наук о Земле РАН» №1(27)'2009 ISSN 1819 - 6586 URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2009/informbul-1 2009/magm-15.pdf

РАСТВОРИМОСТЬ ВОДОРОДА И УГЛЕРОДА В СИСТЕМЕ (NaAlSi₃O₈(80)+FeO(20))-H-С ПРИ 1.5 ГПа И 1400°С Кадик А.А., Куровская Н.А., Игнатьев Ю.А., Кононкова Н.Н. (ГЕОХИ РАН), Колташев В.В., Плотниченко В.Г. (НЦВО РАН)

kadik@geokhi.ru; факс: (495) 938-20-54; тел.: 8(495) 939-70-75

Ключевые слова: растворимость летучих, силикатный расплав, летучесть кислорода, эксперимент

К существенным факторам, определяющим формирование газового состава атмосферы Земли на раннем этапе ее образования, относятся процессы взаимодействия летучих компонентов с силикатными и металлическими расплавами ранней мантии и окислительно–восстановительное состояние мантийного вещества, как источника летучих. Проведенные ранее эксперименты [1; 2] в системе «железосодержащий расплав (ферробазальт)–жидкая фаза Fe–H₂–C» при 4 ГПа и 1550–1600°C в области стабильности Fe–Si металлической фазы показали, что растворенные H и C в силикатном расплаве находятся как в окисленной (OH⁻, H₂O, CO₃²⁻), так и в восстановленной (H₂, CH₄, Si–C, C) форме. Соотношения между ними находятся в существенной зависимости от значений fO_2 .

В настоящей работе, являющейся продолжением этих исследований, проведено экспериментальное изучение равновесий в системе модельный расплав (NaAlSi₃O₈(80)+FeO(20))–H–C при давлении 1.5 ГПа и температуре 1400°C в области значений Δ lgfO₂(IW) от –2.3 до –5.7. Целью исследования являлось определение особенностей совместного растворения водорода и углерода в данной системе при низких значениях fO_2 , которые характерны для T–P– fO_2 условий стабильности металлической фазы железа в равновесии с силикатным веществом ранней мантии Земли.

Эксперименты выполнены на установке [3] конструкции типа цилиндр–поршень в условиях контролируемой летучести водорода. В качестве среды, передающей давление, использовался флюорит с небольшим коэффициентом внутреннего трения. Температура контролировалась Pt–Pt₁₀Rh термопарой с точностью ± 10 °C, неопределенность в измерении давления составляла ± 0.1 ГПа. Исходный материал для опытов представлял собой тонкодисперсную смесь синтезированного альбитового стекла NaAlSi₃O₈(80 масс.%) и окиси железа FeO(20 мас.%). Для создания низких значений fO_2 в экспериментах к порошкообразному составу Ab₈₀FeO₂₀ добавлялся тонкодисперсный SiC в количествах 2, 5 и 7 мас.%. Образец весом около 200 мг помещался в Pt ампулу диаметром 5 мм и высотой 15 мм. Сверху образца помещался графитовый диск толщиной 0,05 мм для исключения взаимодействия между железосодержащим расплавом и Pt [4]. Продолжительность опытов составляла 120 мин.

В экспериментах fH_2 буферировалось ансамблем нагревательного устройства при значениях fO_2 , которые соответствуют равновесию Fe–FeO (IW) [4; 1]. Величины fH_2 в твердом ансамбле установки обуславливаются реакциями следов H_2O с элементами ансамбля. При заданных T, P и fO_2 отношение fH_2O/fH_2 в O–H–системе вне ампулы приобретает фиксированное значение. Внутри Pt– ампулы значения fO_2 контролируются равновесием между графитом, H_2 , буферируемым извне, и компонентами железосодержащего силикатного расплава. Последний восстанавливается с высвобождением O_2 и образованием металлической фазы железа согласно уравнения реакции:

$$2FeO = 2Fe + O_2 \tag{1}$$

Исходный SiC неустойчив в условиях эксперимента и полностью расходуется согласно уравнения реакции:

$$SiC_{(\mu cx.)} + O_2 \rightarrow SiO_{2(pacinizab)} + C_{(rpa\phi ur)}$$
(2).

Равновесия (1) и (2) определяют значения fO_2 в системе во время опытов.

Эксперименты были проведены при 1400 °С и 1.5 ГПа в системах Ab₈₀FeO₂₀ –2%SiC–C, Ab₈₀FeO₂₀ –5%SiC–C и Ab₈₀FeO₂₀ –7%SiC–C при значениях $\Delta lg/O_2(IW)$, равных –2.3, –3.9 и –5.7 соответственно. Продукты опытов предварительно были исследованы под микроскопом в проходящем и отраженном свете и представляют собой зеленоватые или желтоватые стекла, содержащие капли Fe. В стекле присутствуют также гексагональные кристаллы графита, образование которых связывается с кристаллизацией графита во время закалки расплавов после опытов. Текстура и химический состав стекол, металлической фазы Fe и Pt были исследованы методом электронного микрозондового анализа. Определение характера связей углерода и водорода в расплавах, механизма их совместного растворения в расплаве, как функции fO₂, проводилось с использованием метода Рамановской спектроскопии (КР–спектроскопии). Результаты анализа стекол и металлической фазы Fe, полученные методом электронного микрозонда, представлены в таблице.

Таблица

Химический	состав	стекол	И	металлической	фазы	Fe	по	результатам	анализа	методом
электронного	микро	зонда								

N⁰	SiC _{ucx.,}	$\Lambda \log(1W)$	Стекло								
опыта	мас.%	$\Delta Ig/O_2(IW)$	SiO ₂	Al_2O_3	FeO	Na ₂ O	С	Total			
10S	2	-2,3	64,23±0,13	17,00±0,09	12,83±0,08	6,10±0,27	0,43±0,11	100,65			
11S	5	-3,9	73,52±0,26	17,70±0,06	2,76±0,06	6,52±0,15	3,37±0,23	103,98			
12S	7	-5,7	76,18±0,25	18,19±0,28	0,26±0,07	7,33±0,42	4,05±0,71	100,36			
N⁰	SiC _{ucx.,}	$\Lambda \log(1W)$	Металлическая фаза Fe								
опыта	мас.%	$\Delta Ig/O_2(IW)$	Fe	Pt	W	С	Al	Si	Total		
10S	2	-2,3	95,78±0,1	$0,04{\pm}0,07$	0,07±0,1	2,76±0,23	0,03±0,01	$0,07\pm0,02$	98,75		
11S	5	-3,9	96,16±0,28	0,01±0,01	0,10±0,09	4,02±0,71	$0,02\pm0,01$	$0,05\pm 0,01$	100,35		
12S	7	-5,7	96,34±0,35	0,01±0,01	0,18±0,03	3,63±0,39	$0,02\pm0,01$	0,41±0,01	100,58		

Главной особенностью химического состава стекол является уменьшение концентрации FeO от 18 мас.%, что соответствует содержанию FeO в исходном материале, до 0.3 мас.% при наиболее низких значениях $\Delta lg/O_2(IW) = -5.7$. Это свидетельствует о восстановлении FeO в расплаве с образованием жидкой фазы Fe. Проанализированные глобули металлической фазы Fe содержат 3–4 мас.% углерода, что согласуется с составами известных углеродсодержащих сплавов Fe.

Содержания углерода в стеклах, определенные методом электронного микрозондового анализа, приведены в таблице и на рис. 1.

Рис.1. Растворимость углерода в расплавах в системе Ab₈₀FeO₂₀–C–H как функция летучести кислорода (P=1.5 ГПа, T=1400°C)

Наблюдается высокая растворимость углерода в восстановленных альбитовых расплавах, а также увеличение растворимости углерода от 0.4 до 4.1 мас.% с уменьшением $\Delta lgfO_2(IW)$ от – 2.3 до – 5.7.

Результаты исследований стекол методом Рамановской спектроскопии (КР-спектроскопии) представлены на рис. 2.

Рис.2. КР-спектры Н-С содержащих стекол.

КР-спектры стекол в области 2500-4500 см⁻¹ обнаруживают ряд пиков, которые могут быть приписаны С-Н, О-Н и Н-Н связям в стекле.

С–Н-связи: пики в области 2904–2910 см⁻¹ могут принадлежать молекуле CH₄ в стекле;

О–*Н*-*связи:* пики в области 3567–3593 см⁻¹ соответствуют колебаниям О–Н связей в молекуле H₂O или в OH⁻-группах в структуре силикатного расплава. Они имеют отчетливый характер для стекол с Δ lgfO₂(IW) = –2.3 и –3.9 и отсутствуют в спектрах стекол с Δ lgfO₂(IW) = –5.7;

H–H-связи: пики в области 4122–4127 см⁻¹ могут принадлежать молекулярному H₂, растворенному в стекле.

Таким образом, проведенные исследования свидетельствуют об образовании восстановленных (H₂, CH₄) и окисленных (OH⁻, H₂O) форм водорода и углерода при взаимодействии их с восстановленным силикатным расплавом. Характерной чертой взаимодействия углерода и водорода с восстановленным силикатным расплавом является изменение механизма их растворения с понижением fO_2 : при взаимодействии в области значений $\Delta lg fO_2(IW) = (-2.3)-(-3.9)$ преобладающим соединением водорода в расплаве является гидроксильная группа OH⁻, в то время как в области значений $\Delta lg fO_2(IW) = -5.7$ водород образует в расплаве соединения со связью типа C–H (CH₄).

Работа выполнена при поддержке гранта РФФИ № 08-05-00377, Программы ОНЗ РАН №8

Литература

1. Kadik A.A., Pineau F., Litvin Yu. A., Jendrzejewski N., Martinez I., Javoy M. // Journal of Petrology. 2004. № 7. P. 1297-1310.

2. Кадик А.А., Литвин Ю.А., Колташев В.В., Крюкова Е.Б., Плотниченко В.Г. // Геохимия. 2006. № 1. С. 38-53.

3. Слуцкий А.Б. Сб. Экспериментальные исследования в области глубинных процессов. М. 1962. С. 212-215.

4. Литвин Ю.А. // Геохимия. 1981. №8. С. 1234-1242.

© Вестник Отделения наук о Земле РАН, 1997 (год основания), 2009 При полном или частичном использовании материалов публикаций журнала, ссылка на «Вестник Отделения наук о Земле РАН» обязательна

Вестник Отделения наук о Земле РАН - №1(27) 2009

Информационный бюллетень Ежегодного семинара по экспериментальной минералогии, петрологии и геохимии 2009 года (ЕСЭМПГ-2009)

URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2009/informbul-1_2009/magm-15.pdf Опубликовано 1 сентября 2009 г.