Электронный научно-информационный журнал «Вестник Отделения наук о Земле РАН» №1(27)'2009 ISSN 1819 - 6586 URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2009/informbul-1 2009/magm-19.pdf

ЭКСПЕРИМЕНТАЛЬНОЕ МОДЕЛИРОВАНИЕ ЩЕЛОЧНО-КАРБОНАТНОГО МЕТАСОМАТОЗА И ПЛАВЛЕНИЯ МАНТИИ: ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ФАЗОВЫЕ СООТНОШЕНИЯ

Костюк А.В., Горбачев Н.С. (ИЭМ РАН)

nastya@iem.ac.ru, gor@iem.ac.ru

Ключевые слова: метасоматоз, плавление, эксперимент

Во всех типах глубинных магм наряду с разнообразными по составу коровыми ксенолитами широкое распространение получили как перидотитовые, так и эклогитовые включения. В эклогитовых ксенолитах широко проявлены признаки частичного плавления, так же зачастую они содержат обогащенные щелочами (до 16 мас. %) силикатные стекла, флогопит, карбонаты, сульфиды, санидин. Формирование таких образований связывают с частичным плавлением эклогита при воздействии на них глубинных, богатых щелочами флюидов. В данной работе представлены результаты экспериментального изучения влияния температуры на фазовые соотношения при щелочно-карбонатном метасоматозе и плавлении эклогита при Р=3.6-4.0 ГПА, T=850-1450°C.

В основе исследования находилось две системы. Первая (T=850-1450°C) – насыщенная углеродом, вторая (T=1200-1250°C) – «сухая». В качестве стартового материала использовали пикритобазальт смешанный с 10% (K, Na)₂CO₃. Опыты проводились на аппарате типа НЛ в ИЭМ РАН с использованием закалочной методики. Температура измерялась Pt30Rh/Pt6/Rh термопарой, давление при высоких температурах калибровалось по кривой равновесия кварц - коэсит. Точность определения температуры и давления в опытах оценивается в \pm 5°C и \pm 1 кбар. Длительность эксперимента составляла 6 - 8 часов. Продукты экспериментов изучались на цифровом электронном сканирующем микроскопе Tescan VEGA TS 5130MM, оснащенным детекторами вторичных и отраженных электронов на YAG-кристаллах и энергодисперсионным рентгеновским микроанализатором с полупроводниковым Si(Li) детектором INCA Energy 350.

В ходе эксперимента при близсолидусном (T=850°C, P=3.6ГПа) щелочно-карбонатном метасоматозе эклогита в углерод-насыщенной системе с углеводородным флюидом формируется графит-гранат-клинопироксен-флогопитовая ассоциация с акцессорным хромитом, сосуществующая с межзерновым Na-щелочным силикатным расплавом (в образце не более 1-2%). Карбонатный расплав не обнаружен. Клинопироксены характеризуются низким содержанием кальция (11-13 мас.% CaO) и высоким содержанием калия (до 3.0 мас.% K₂O) (табл.1).

Таблица 1

	Ga	Срх	Flog	m	Cht
SiO ₂	39.6	50.7	36.2	52.54	0.2
TiO ₂	0.4	0.1	0.3	0.75	0.4
Al_2O_3	19.1	7.0	18.0	13.44	31.3
Cr_2O_3	1.0	-	0.3	0.79	33.6
FeO	11.6	8.9	23.6	8.65	16.6
MgO	1.2	13.8	10.8	5.01	16.2
CaO	25.9	13.7	0.3	10.47	0.1
Na ₂ O	0.6	2.1	0.6	7.6	0.3
K ₂ O	< 0.1	3.0	9.5	0.64	
Сумма	99.5	99.3	99.6	99.89	98.7

Представительный фазовый состав продуктов метасоматоза и плавления эклогита в углеродно-насыщенной системе с углеводородным флюидом. Т=850°С, Р=3.5 ГПа

При тех же составах в углерод-насыщенной системе при температуре 1300°С (Р=3.9ГПа) и 1450°С (Р=4ГПа) увеличивается степень плавления эклогита (до 30% и более). Закалочный об-

разец представлен крупными таблитчатыми выделениями клинопироксена, флогопита, акцессорного хромита, сцементированных щелочным Na-K расплавом. Карбонатная фаза так же не обнаружена (рис.1, табл.2).

Таблица 2

	Срх	Flog	Cht	m
SiO ₂	46.72	41.66	0.08	46.10
TiO ₂	3.60	1.55	0.4	0.37
Al_2O_3	14.44	14.61	31.26	19.87
Cr ₂ O ₃	0.11	0.37	33.64	0.12
FeO	2.53	1.69	16.03	1.38
MnO	0.2	0.2	-	0.1
MgO	11.27	25.22	15.75	0.2
CaO	20.36	0.15	0.02	0.32
Na ₂ O	2.08	0.56	0.04	8.60
K ₂ O	< 0.1	9.01	-	3.61
Сумма	98.24	95.13	97.39	81.50

Представительный фазовый состав продуктов метасоматоза и плавления эклогита в углеродно-насыщенной системе с углеводородным флюидом при T=1300°C, P=4 ГПа

Рис.1. Изображение в отраженных электронах экспериментального образца. Плавление эклогита в углеродно-насыщенной системе с углеводородным флюидом при T=1300°C, P=4ГПа

Состав ликвидусной ассоциации в высокотемпературных (до 1450°С) экспериментах, моделирующих щелочно-карбонатный метасоматоз и плавление эклогитов, отличается от фазового состава близсолидусной ассоциации в низкотемпературных (850° С) экспериментах. В высокотемпературных экспериментах присутствует только высоко-кальциевый клинопироксен с низким (<0.1% K₂O) содержанием калия, нет граната. Отсутствие карбонатной фазы в экспериментах можно объяснить низкой активностью CO₂, так как в присутствии графита при T-P параметрах эксперимента равновесие C-CO-CO₂ смещается в сторону CO. Температурным эффектом можно объяснить и отсутствие граната на ликвидусе щелочных силикатных расплавов.

Карбонатизация силикатных расплавов с образованием несмесимых щелочной силикатной и карбонатной жидкостей наблюдалась при щелочно-карбонатном метасоматозе и частичном плавлении эклогита в системе ненасыщенной углеродом при T=1200°C, P=3.8 ГПа. В этих условиях формировались щелочные расплавы (m) фонолитового состава, карбонатные (Ka) расплавы, сосуществующие с Са-клинопироксеном (Cpx), флогопитом (Flog) и хромитом (Cht) (рис.2, табл. 3).

	Срх	Flog	m	Ка	Cht
SiO ₂	52.1	40.1	49.0	2.4	0.65
TiO ₂	0.5	1.4	0.5	0.1	0.7
Al ₂ O ₃	7.8	12.9	14.9	1.0	21.75
Cr ₂ O ₃	0.8	0.2	0.2	0.1	37.93
FeO	8.4	18.0	5.0	12.0	28.79
MgO	10.0	7.9	1.2	1.2	7.05
CaO	14.3	1.7	2.4	20.6	0.26
Na ₂ O	4.3	1.8	6.3	12.6	0.23
K ₂ O	0.1	6.1	6.1	1.1	0.08
Сумма	98.4	92.2	83.6	52.0	97.44

Состав сосуществующих фаз при щелочно-карбонатном метасоматозе и плавлении эклогита. Т=1200°С Р=3.8 ГПа

Экспериментальные образцы представлены крупными (десятки мкм) таблитчатыми выделениями силикатных минералов, сцементированных силикатным стеклом (закаленный силикатный расплав) с овальной формы включениями карбонатной фазы (закаленный карбонатный расплав) размером 5-10 мк. Карбонаты обогащены (в пересчете на 100% оксидов, без CO₂) Са (до 40 мас.% CaO), Na (до 25 мас.% Na₂O), содержат SiO₂ (до 5 мас. %), характеризуются высокой растворимостью серы (до 3 мас.% SO₃) (рис.2).

Рис.2. Плавление метасоматизированного эклогита, жидкостная силикатно-карбонатная несмесимость. Слева - составы сосуществующих фаз: L - силикатный, Ка - карбонатный расплавы, Срх – клинопироксен, Flog – флогопит, Cht - хромит. Справа – фотография образца в отраженных электронах

В этой же системе, при повышении температуры до 1250°С (Р=3.8 ГПа) закалочный образец представлен несмесимыми щелочным силикатным, карбонатным и сульфидным расплавами, сосуществующими с флогопитом, Са-клинопироксеном, хромитом и гранатом (табл.4, рис.3).

	Срх	Ga	m	Ка	Flog
SiO ₂	52.5	44.22	55.53	0.58	39.43
TiO ₂	0.27	0.02	-	-	0.38
Al ₂ O ₃	8.11	24.07	21.33	0.34	14.93
Cr ₂ O ₃	0.11	0.71	-	-	0.14
FeO	1.32	3.18	0.66	3.95	1.5
MgO	17.87	23.47	2.18	4.64	23.46
CaO	18.76	6.03	0.63	35.77	0.1
Na ₂ O	1.41	0.24	10.91	1.55	5.04
K ₂ O	0.09	-	2.4	0.14	9.76
Сумма	100.4	101.94	93.64	46.97	94.74

Состав сосуществующих фаз при щелочно-карбонатном метасоматозе и плавлении эклогита. Т=1250°С Р=3.8 ГПа

Рис.3. Микрофотографии образцов в отраженных электронах. Т=1250°С Р=3.8 ГПа

В ходе исследований было выявлено, что щелочно-карбонатный метасоматоз и плавление эклогитов приводит к формированию щелочных и карбонатных расплавов. Особенности состава расплавов и сосуществующих с ними ассоциаций минералов свидетельствуют об эффективности щелочно-карбонатных расплавов в метасоматическом преобразовании верхней мантии и важной роли этих процессов в мантийном магмообразовании, в том числе в формировании щелочных и карбонатитовых магм. Полученные результаты свидетельствуют об эффективном влиянии температуры на фазовые соотношения и межфазовые распределения компонентов в исследуемой системе.

Работа выполнена при поддержке РФФИ 09-05-01131 ОНЗ РАН 2009

Вестник Отделения наук о Земле РАН - №1(27) 2009 Информационный бюллетень Ежегодного семинара по экспериментальной минералогии, петрологии и геохимии 2009 года (ЕСЭМПГ-2009) URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2009/informbul-1_2009/magm-19.pdf Опубликовано 1 сентября 2009 г.

© Вестник Отделения наук о Земле РАН, 1997 (год основания), 2009 При полном или частичном использовании материалов публикаций журнала, ссылка на «Вестник Отделения наук о Земле РАН» обязательна