ENTHALPIES OF FORMATION OF MINERALS OF SERPENTINE GROUP

Ogorodova L.P., Melchakova L.V., Kiseleva I.A. (geol. dep. MSU), **Korytkova E.N.** (ISC RAS) *logor@geol.msu.ru*; ph.: (495) 939-13-49

Key words: calorimetry, enthalpy, antigorite, chrysotile, lizardite

The minerals of magnesium serpentine group of composition Mg₃Si₂O₅(OH)₄: natural scale antigorite (Saronovskoe deposit, N.-W. Ural), chrysotile-asbestos from serpentinizated ultrabasites (E. Sayani) and synthesized under hydrothermal conditions lizardite were studied. The diagnostic investigations were performed by electron microprobe and thermal analyses, X-ray diffraction and IRspectroscopy. For thermochemical study of serpentines the high-temperature heat-flux Tian-Calvet microcalorimeter was used. The enthalpies of formation were determined by "transposed temperature drop solution calorimetry" method. A samples of 1.5-10 ($\pm 2 \times 10^{-3}$) mg were thermostated at room temperature and were thrown down into the calorimeter with a melt $2PbO \cdot B_2O_3$ as a solvent at T=973K. The heat measured contained two contributions: the heat content of the samples and the enthalpy of solution at T=973 K - [$H^0(973 \text{ K})$ - $H^0(298.15 \text{ K})$ + $\Delta_{sol}H^0(973 \text{ K})$]. The calorimeter was calibrated in the same manner by using a platinum reference sample with known enthalpy increments [1]. Using experimental and needed thermochemical data for constituent oxides the standard enthalpies of formation of minerals studied were calculated (table). The values of $\Delta_{d} H^{o}_{el}(298.15 \text{ K})$ obtained are in a good agreement within experimental errors. Differences between magnesium serpentines are associated with some disproportions between octahedral and tetrahedral nets in structure, which lead to formation of different structural lays - planar (lizardite), cylindrical (chrysotile) и curved modulated (antigorite). Our results show minor energetic distinctions between these three structural types.

Table

Substance	<i>H</i> °(973 К)- <i>H</i> °(298.15 К)+	<i>-Д</i> , <i>H^o_{ox}</i> (298.15 К)	$-\Delta_{f}H^{o}_{el}(298.15 \text{ K})$
	$\Delta_{sol}H^{o}(973 \text{ K})$		
MgO (s)	36.38±0.59 ^a		601.6±0.3 [1]
$SiO_2(s)$	39.43±0.21 ^b		910.7±1.0 [1]
H ₂ O (l)	40.9±2.5 °		285.8±0.1 [1]
Antigirite	445.1±10.6 (8) ^d	170±12	4368±12
Chrysotile	425.7±16.5 (6) ^d	156±17	4353±17
Lizardite	425.5±10.2 (4) ^d	156±12	4353±12

Thermochemical data for minerals studied and constituent oxides (kJ/mol)

^{a, b} – calculated using reference data on $[H^{o}(T)-H^{o}(298.15 \text{ K})]$ [1] and experimental data on $\Delta_{sol}H^{o}(973 \text{ K})$: ^a–[2], ^b–[3]; ^c – estimated in [4]; ^d - errors are expressed by interval for P=95%, in brackets the number of determinations is given

This work was supported by Russian Fund of Fundamental Investigations of Russian Academy of Sciences (grant № 09-05-00302)

References

1. Robie R.A., Hemingway B.S. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures // U.S. Geol. Surv. Bull. 1995. No 2131. 461p.

2. Navrotsky A., Coons.W.J. Thermochemistry of some pyroxenes and related compounds // Geochim. et Cosmochim. Acta. 1976. V. 40. P. 1281-1295. 3. Kiseleva I.A., Ogorodova L.P., Topor N.D., Chigareva O.G. Thermochemical investigation of the system CaO-MgO-SiO₂ // Geokhimiya. 1979. No 12. P. 1811-1825.

4. Kiseleva I.A., Ogorodova L.P., Topor N.D., Chigareva O.G. High-temperature calorimetry for determination of enthalpies of formation of OH-bearing minerals // Geokhimiya. 1983. No 12. P. 1745-1755.

Electronic Scientific Information Journal "Vestnik Otdelenia nauk o Zemle RAN" № 1(27) 2009 ISSN 1819 – 6586 Informational Bulletin of the Annual Seminar of Experimental Mineralogy, Petrology and Geochemistry – 2009 URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2009/informbul-1_2009/mineral-15e.pdf

Published on July, 1, 2009 © Vestnik Otdelenia nauk o Zemle RAN, 1997-2009 All rights reserved