Электронный научно-информационный журнал «Вестник Отделения наук о Земле РАН» №1(27)'2009 ISSN 1819 - 6586 URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2009/informbul-1 2009/planet-22.pdf

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ДЕФОРМАЦИЙ ЗЕМНОЙ КОРЫ ГЕОСИНКЛИНАЛЬНОГО И ПЛАТФОРМЕННОГО РЕГИОНОВ Рудаков В.П., Цыплаков В.В. (ИФЗ РАН)

rudak@mail.ru; факс: 252-21-98; тел.: 254-90-06

Ключевые слова: флюидодинамика, мониторинг, деформации, спектральный анализ

Результатами анализа флюидодинамического (эманационного) мониторинга геодеформационных процессов, выполненного на различных геодинамических полигонах бывшего СССР, было показано [1-3], что колебательные движения Восточно-Европейской платформы влияют на изменение напряженно-деформированного состояния массива горных пород на Кавказе, провоцируя высвобождение сейсмической энергии.

С целью установления характера взаимообусловленности геодеформационных процессов в геосинклинальном регионе (на Кавказе) и в условиях сопряженной с ним Восточно-Европейской платформы был проведен компарационный анализ данных деформометрических наблюдений, выполненных в Приэльбрусье (на Баксане), и данных флюидодинамического мониторинга геодеформационных процессов, выполненного в условиях Московской синеклизы (на территории Москвы). Непрерывные измерения деформаций на Кавказе осуществляются с помощью лазерного деформографа ГАИШ МГУ с измерительной базой 75 м и разрешающей способностью $2x10^{-13}$, установленного в штольне нейтринной обсерватории [4]. Непрерывные наблюдения за вариациями флюидодинамического режима Московской синеклизы осуществляются в зоне динамического влияния разломов "Краснопресненского тектонического узла" по эманациям радона и водорода [5] с использованием оригинальной технологии, обеспечивающей регистрацию геодеформационных процессов на приливном уровне, т.е. на уровне 10^{-8} .

На рис.1 приведены временные ряды вариаций деформаций горных пород на Кавказе и вариаций полей водорода и радона на территории Москвы, которые являются фрагментом одновременной записи названных параметров, осредненной в часовые интервалы, общей длительностью 13510 часов, т.е. более 1,5 лет. Начало записи 11 ноября 2004 г. обусловлено моментом включения лазерного деформографа, а окончание определилось выходом из строя микропроцессорного регистратора данных эманационных измерений.

Представленный фрагмент многолетних измерений интересен тем, что позволяет оценить поведение геодеформационных полей в геосинклинальном и платформенном регионах в период развития глобальных тектонических процессов, спровоцировавших катастрофические землетрясения в Индийском океане 26 декабря 2004 г. и 28 марта 2005 г.. Уровень выделения сейсмической энергии при этих землетрясениях достиг 9-бальной отметки по Шкале магнитуд, что свидетельствует о экстраординарном характере геодеформационных процессов, участвовавших в их подготовке, и, очевидно, затронувших земную кору в целом.

Исследование временных рядов осуществлялось на основе взаимокорреляционного и спектрального анализа, в результате которого были установлены некоторые общие и частные характеристик измерявшихся параметров, определяющих, в той или иной мере, реакцию геосинклинального и платформенного регионов на глобальные геодеформационные процессы.

Прежде всего, обращает на себя внимание то, что трендовая составляющая деформаций на Кавказе и деформаций, определяющих условия флюидопереноса в тектонических нарушениях Московской синеклизы, носит сезонный (годичный) характер, что нашло также отображение в результатах взаимокорреляционного анализа. Причем сезонная составляющая в деформационных измерениях на Кавказе практически на месяц опережает ход аналогичных составляющих временных рядов эманационных измерений в условиях платформы. Корреляция между деформометрическими и водородометрическими данными положительна, а между деформометрическими и радонометрическими – отрицательна, что соответствует установленному ранее характеру поведения эманаций радона и водорода при ординарных (не аномальных) изменениях геодеформационных процессов, управляющих изменением флюидопроницаемости тектонических образований, используемых при эманационном мониторинге[5]. При этом поле водорода в Московской синеклизе меняется синхронно деформациям горного сооружения Кавказа, а поле радона - с некоторым опережением.

Рис.1. Фрагменты временных рядов: а) деформометрических измерений на Кавказе (Баксан), б) и в) эманационного (водородного и радонового, соответственно) мониторинга геодеформационных процессов в условиях Московской синеклизы. Стрелками отмечены моменты катастрофических землетрясений в Индийском океане 26 декабря 2004 г. и 28 марта 2005 г.

Спектральный анализ всего временного ряда деформометрических измерений (подробный анализ которых приведен в работе [6]), и последующий спектральный анализ временных рядов взаимокорреляционных функций полей радона и водорода в пределах выделенного фрагмента, позволили идентифицировать составляющие измерявшихся параметров в области вариаций длиннопериодного диапазона (табл. 1) и в области вариаций, обусловленных лунносолнечными приливами (табл. 2). Аналогичность спектральных составляющих анализировавшихся временных рядов свидетельствует об адекватности отображения глобальных геодеформационных процессов в измеряемых параметрах геосинклинального и платформенного регионов.

Таблица 1

Значимые (P>0.95) спектральные пики длиннопериодного диапазона временных рядов лазерной деформометрии на Кавказе и эманационных измерений в условиях ВЕП (с дублированием измерений датчиками, установленными в 30 метров от основных)

Назв.	Сут	сут	сут	сут	сут	сут	сут	Сут	сут						
Деф.	22.8	20.1	17.1	15.9	13.9	11.2	10.0	9.5	8.8	8.13	7.8	7.5	6.6		4.9
1рад/д.	23.5	20.1	18.4		13.9	11.2		9.5	8.5	8.13	7.8	7.5	7.0	5.9	5.3
1вод/д.	23.5	20.7	18.9	14.5		11.2	10.2			8.13	7.8	7.5	7.0	6.4	5.9
2рад/д.	22.8		17.1		13.9	11.2		9.5		8.13			6.6	5.6	4.9
2вод/д.	22.8	20.7		15.9	14.5	11.8	10.0	9.5	8.5	8.13			7.0	6.4	4.9

Таблица 2

Значимые (P>0,95) спектральные пики диапазона лунно-солнечных приливов временных рядов деформометрии на Кавказе и эманационных измерений в условиях ВЕП

Назв.	Т,час	А(о.ед) *10 ⁻³	Т,час	А(о.ед) *10 ⁻³	Т,час	А(о.ед) *10 ⁻³	Т,час	A(o.e) *10 ⁻³	Т,час	А(о.ед) *10 ⁻³	Т,час	A(o.e *10 ⁻³
Деф.			25.75	0.7	24.0	0.7	12.7	0.13	12.4	2.6	12.0	0.5
1рад/д.	26.9	0.08	25.75	4.9	24.0	0.35	12.7	0.1	12.4	0.6	12.0	0.17
1вод/д.	26.9	0.04	25.9	0.2	24.0	1.1	12.7	0.02	12.4	0.15	12.0	0.09
2рад/д.	26.9	0.17	25.75	0.6	24.0	1.1	12.7	0.16	12.4	0.5	12.0	0.6
2вод/д.			25.75	0.13	24.0	0.93	12.7	0.04	12.4	0.2	12.0	0.3

В то же время, как можно видеть, спектральный состав временных рядов эманационных полей несколько богаче спектрального состава деформометрических данных, что объясняется технологией эманационных измерений, обеспечивающей извлечение информации об объемных деформациях горного массива, в то время, как деформометрические измерения одномерны и приповерхностны. Видимо, этим же объясняется характер реакции эманационных полей (рис.1) на глобальные изменения напряженно-деформированного состояния земной коры, спровоцировавшие высвобождение сейсмической энергии вблизи острова Суматра 26 декабря 2004 г. и 28 марта 2005 г., когда в поле водорода Московской синеклизы практически за месяц до трагических событий произошел резкий скачок, пятикратно превысивший уровень концентрации предшествующих месяцев. В поле радона этот эффект наоборот отметился более чем двукратным (на рис.1 не показано из-за усеченности временного ряда) уменьшением уровня концентрации эманации [5].

После реализации землетрясения 28.03.05 г. в течение 3-х месяцев происходило снижение концентрации водорода до исходного, а в последующие месяцы практически до нулевого уровня. Концентрация радона на исходный уровень не вернулась, что объясняется нисходящим трендом во временных рядах эманационных полей, связанным с влиянием волновых геодеформационных процессов более высокого иерархического уровня [7].

В данных деформометрических измерений эффект глобального изменения напряженнодеформированного состояния земной коры проявился в результатах совместного анализа записей, полученных на Кавказе и в п. Протвино (Московская обл.)[8], в которых период подготовки и реализации землетрясений характеризуется единообразием изменения регистрируемых параметров.

Следовательно, согласно данным дефомометрических наблюдений в условиях геосинклинального региона и данным флюидодинамического (эманационного) мониторинга геодеформационных процессов в условиях ВЕП в подготовке и реализации катастрофических геодинамических событий таких как, например, землетрясений, произошедших вблизи острова Суматра 26 декабря 2004 г. и 28 марта 2005 г., задействованы процессы глобального изменения напряженно-деформированного состояния земной коры. При этом рациональное использование данных деформометрических измерений в условиях геосинклинального региона и в условиях сопряженной с ним платформы, равно как данных измерения вариаций флюидодинамических режимов геоструктурных образований платформы позволяет контролировать эти процессы и прогнозировать периоды формирования областей сейсмотектонической деструкции массива горных пород. Авторы выражают искреннюю признательность сотруднику ГАИШ МГУ, доктору физико-математических наук Милюкову В.К. за предоставленные записи деформографических наблюдений на Кавказе

Литература

1. Рудаков В.П. О роли геодвижений волновой структуры в активизации геодинамических процессов в асейсмичных регионах (на примере геодинамических явлений Русской платформы) // ДАН. 1993. Т. 332. №4. С. 509-511.

2. Рудаков В.П. Геодеформационные волны в вариациях флюидодинамических и сейсмических режимов геосинклинальных и платформенных областей. В сб.: Исследования в области геофизики: К 75-летию Объединенного института физики Земли им. О.Ю.Шмидта // М.: ИФЗ РАН.2004. С. 119-122.

3. Рудаков В.П. Проявление современной геодинамики Русской платформы в техногенных процессах и эманационных полях // АНРИ. 2008. №2. С. 64-71.

4. Милюков В.К., Клячко Б.С., Мясников А.В., Стриганов П.С., Янин А.Ф., Власов А.Н. Лазерный интерферометр-деформограф для мониторинга движений земной коры // Приборы и техника эксперимента. 2005. №6. С. 87-103.

5. Рудаков В.П., Цыплаков В.В. Флюидодинамические эффекты разрывных структур Московской синеклизы в связи с глобальными геодеформационными процессами // Геохимия. 2008. №11. С. 1168-1173.

6. Милюков В.К., Копаев А.В., Лагуткина А.В., Миронов А.П., Мясников А.В. Наблюдения приливных деформаций земной коры в Приэльбрусье // Физика Земли. 2007. Т. 43. №11. С. 922-930.

7. *Rudakov V.P.* Seismicity implication of subsoil radon dynamics in seismically active regions of the former USSR: the Caucasus mountains case study // Journal of earthquake prediction research. 1996. V. 5. No 4. P. 584-593.

8. Латынина Л.А., Милюков В.К., Васильев И..М. Сильнейшие землетрясения и глобальные тектонические процессы // Наука и технология в России. 2006. №1-2. С. 4-6.

Вестник Отделения наук о Земле РАН - №1(27) 2009

Информационный бюллетень Ежегодного семинара по экспериментальной минералогии, петрологии и геохимии 2009 года (ЕСЭМПГ-2009)

URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2009/informbul-1_2009/planet-22.pdf

Опубликовано 1 сентября 2009 г.

© Вестник Отделения наук о Земле РАН, 1997 (год основания), 2009 При полном или частичном использовании материалов публикаций журнала, ссылка на «Вестник Отделения наук о Земле РАН» обязательна