Электронный научно-информационный журнал «Вестник Отделения наук о Земле РАН» №1(27)'2009 ISSN 1819 - 6586 URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2009/informbul-1 2009/planet-33.pdf

ИССЛЕДОВАНИЕ ВОЗМОЖНОСТЕЙ ТЕОРЕТИЧЕСКИХ ПОДХОДОВ ДЛЯ РАСЧЕТОВ АКТИВНОСТЕЙ ОКСИДОВ В СОЕДИНЕНИЯХ СИСТЕМЫ CaO-MgO-Al₂O₃-SiO₂

Шорников С.И. (GEOKHI RAS)

sergey.shornikov@gmail.com

Ключевые слова: термодинамическое моделирование, активность оксидов в расплаве, система CaO-MgO-Al₂O₃-SiO₂

Для изучения возможностей термодинамических подходов для расчетов активностей оксидов в соединениях системы CaO–MgO–Al₂O₃–SiO₂ были рассмотрены образцы, являющиеся синтетическими аналогами метеоритного вещества. Образцы представляли собой силикаты магния, общее содержание остальных оксидов не превышало 10 мол. %. Средний состав образцов (мол. %): CaO – 4.9; MgO – 51.6; Al₂O₃ – 3.5; SiO₂ – 40.0.

Результаты исследования этих образцов были положены в основу расчетов, моделирующих кинетику испарения хондритов в различных окислительно-восстановительных условиях [1-3]. В этих расчетах применялись термодинамические модели расплавов *pMelts* [4] и *CMAS* [5, 6].

Модель *pMelts* ориентирована на широкий диапазон составов и условий кристаллизации магматических расплавов. Условия равновесия рассчитываются *методом минимизации энергии Гиббса* при фиксированных параметрах – p, T и $f(O_2)$, или $\Delta_f H_T$, p и $f(O_2)$, или $\Delta_f S_T$, p и $f(O_2)$ или T, V и $f(O_2)$. Фазовые взаимоотношения подчиняются законам регулярных растворов, что означает

$$\Delta_f S = -R \sum_i x(i) \ln x(i) , \qquad (1)$$

где x(i) – мольная доля компонента, $\Delta_i S$ – энтропия образования расплава.

Однако для случая расплавов системы CaO–MgO–Al₂O₃–SiO₂ рассчитанные по соотношению (1) значения $\Delta_f S$ значительно отличаются от экспериментальных (табл. 1). Отметим, что достоверность моделирования равновесий в *pMelts* столкнулась с рядом трудностей. По мнению авторов модели [4], они обусловлены проблемами термодинамической обработки и качеством многих экспериментальных данных, на которых построена модель. Берман и Браун [6] считают, что модель *pMelts* не может описать фазовые равновесия между компонентами расплава и рассчитать термодинамические свойства составов, находящихся вне пределов допустимого диапазона концентраций.

Таблица 1

считанные по соотношению (1) и наиденные экспериментально [7, 8].									
Соедине-	$\Delta_f S, Дж/(моль K)$		Ссыл-	Соедине-	Δ _f S, Дж/(моль [•] К)		Ссыл-		
ние	$\Delta_f S_{calc}$	$\Delta_f S_{sol}$	$\Delta_f S_{liq}$	ка	ние	$\Delta_f S_{calc}$	$\Delta_f S_{sol}$	$\Delta_f S_{liq}$	ка
CaAl ₁₂ O ₁₉	3.41	5.00	-	[8]	Ca ₃ Al ₂ Si ₃ O ₁₂	7.25	-4.23	_	[7]
Ca ₃ SiO ₅	4.68	6.57	_	[7]	Mg ₃ Al ₂ Si ₃ O ₁₂	7.25	-0.41	21.52	[7]
$Ca_{12}Al_{14}O_{33}$	5.03	9.11	25.96	[8]	Mg ₂ Al ₄ Si ₅ O ₁₈	8.27	-0.43	21.64	[7]
CaAl ₄ O ₇	5.29	9.94	23.21	[8]	Ca ₃ MgAl ₄ O ₁₀	8.41	8.00	_	[8]
Mg ₂ SiO ₄	5.29	-0.92	9.55	[7]	Ca ₃ MgSi ₂ O ₈	8.41	2.50	13.77	[7]

CaAl₂Si₂O₈

Ca₂Al₂SiO₇

CaMgSi₂O₄

Ca2MgSi2O7

Mg₂Al₄SiO₉

CaAl₂SiO₆

CaMgSiO₄

8.64

8.64

8.64

8.77

8.77

9.13

9.13

-1.10

2.11

-3.10

2.41

0.75

7.52

-0.23

17.10

25.20

20.60

14.35

-

_

_

[8]

[8]

[8]

[7]

[7]

[7]

[7]

Ca₂SiO₄

Al₆Si₂O₁₃

Ca₃Si₂O₇

CaAl₂O₄

MgAl₂O₄

MgSiO₃

CaSiO₃

5.29

5.60

5.60

5.76

5.76

5.76

5.76

4.75

11.64

-3.81

11.10

4.38

-2.68

1.74

9.60

19.81

28.10

44.28

8.03

[8]

[8]

[7]

[8]

[8]

[8]

[7]

Энтропии образования соединений в расплавах системы CaO–MgO–Al₂O₃–SiO₂, рассчитанные по соотношению (1) и найденные экспериментально [7, 8]. В основе модели *CMAS*, разработанной Берманом и Брауном [5, 6], лежит *модифицирован*ное уравнение Маргулеса, в котором коэффициент активности $\gamma(i)$ двойной системы записывается в виде следующего степенного ряда:

$$\ln \gamma(i) = \sum_{i} a(i) x^{i+1}(k) ,$$

(2)

где a(i) – константы.

Для описания тройного оксидного расплава системы CaO–Al₂O₃–SiO₂ [6] потребовалось рассчитать 24 параметра – по 6 параметров Маргулеса для каждой бинарной системы (CaO–Al₂O₃, CaO–SiO₂ и Al₂O₃–SiO₂) и 6 параметров для самой тройной системы. Эти параметры были найдены в результате решения уравнения Маргулеса четвертой степени, оптимизированного по массиву экспериментальных данных о термодинамических свойствах 24 твердых и 3 жидких фаз кальциевоалюмосиликатной системы, включающего стандартные энтальпии и энтропии образования, молярные объемы и температурные зависимости теплоемкостей перечисленных фаз.

Авторы [5, 6] заявляют, что предлагаемая модель пригодна для расчетов термодинамических свойств неидеальных жидкостей и построения фазовых диаграмм многокомпонентных систем путем добавления новых компонентов и для полиномов любой степени, определяемых соотношениями, подобными (2). Однако рассчитанные на основании модели *CMAS* значения энтальпий плавления ($\Delta_m H$) оксидных соединений в системе CaO–Al₂O₃–SiO₂ в ряде случаев довольно далеки от экспериментальных данных (табл. 2). Поэтому утверждения авторов многопараметрической модели *CMAS* о ее возможностях для расчетов термодинамических свойств оксидных расплавов при ограниченных ресурсах экспериментальных данных, по-видимому, малоубедительны.

Таблица 2

Соединение	Расчет по м	модели CMAS	Экспериментальные результаты			
	T_m, \mathbf{K}	$\Delta_m H$, кДж/моль	T_m, \mathbf{K}	$\Delta_m H$, кДж/моль	Ссылка	
CaO	3374	122.1	2900±175	52.0±5.0	[9]	
Al ₂ O ₃	2305	126.9	2327±4	111.4±3.0	[9]	
SiO ₂	1999	12.6	1996±5	9.6±0.6	[9]	
CaSiO ₃	1823	24.9	1821±5	28.7±1.4	[7]	
Ca ₂ SiO ₄	2478	14.2	2403±10	18.1±0.4	[7]	
CaAl ₂ O ₄	1886	44.3	1887±5	31.9±3.0	[8]	
CaAl ₄ O ₇	2049	63.9	2035±10	27.0±2.5	[8]	
CaAl ₁₂ O ₁₉	2133	96.8	2148±10	16.8±1.9	[8]	
CaAl ₂ Si ₂ O ₈	1828	35.1	1830±2	33.3±1.0	[8]	
Ca ₂ Al ₂ SiO ₇	1863	34.6	1863±5	43.0±1.5	[8]	

Энтальпии плавления соединений в системе CaO–Al₂O₃–SiO₂, рассчитанные по модели *CMAS* [6] и найденные экспериментально [7-9]

В этой связи особый интерес вызывают решеточные модели, являющиеся на сегодняшний день наиболее простым подходом к проблеме учета сильных взаимодействий в теории жидкостей и растворов. Разработанные в рамках *meopuu udeaльных ассоциированных растворов (IAS)* модели рассматривают раствор, как идеальную смесь мономерных молекул и ассоциативных комплексов при всех концентрациях. Детальный анализ термодинамических свойств идеальных ассоциированных растворов дан в известной монографии Пригожина и Дефея [10]. Такой подход для расчета термодинамических свойств многокомпонентных оксидных расплавов уже был успешно применен ранее в работах Хэсти и Боннелла [11], использующих метод нахождения условий равновесия минимизацией общей энергии системы. В настоящей работе также использовался этот подход. Исходными термодинамическими данными для расчетов активностей оксидов в расплавах являлись энергии Гиббса образования конденсированных фаз и компонентов газовой фазы из элементов.

В табл. 3 приведены результаты расчетов активностей оксидов среднего состава образцов системы CaO-MgO-Al₂O₃-SiO₂, выполненных в рамках моделей *pMelts*, *CMAS* и *IAS*.

Метод	<i>T</i> , K		Ссылка			
,,,	, ,	CaO	MgO	Al ₂ O ₃	SiO ₂	
pMelts	1673	$3.99 \cdot 10^{-6}$	$1.51 \cdot 10^{-2}$	$5.21 \cdot 10^{-3}$	$2.21 \cdot 10^{-1}$	[2]
CMAS		$7.89 \cdot 10^{-6}$	$1.33 \cdot 10^{-2}$	$4.39 \cdot 10^{-3}$	$2.05 \cdot 10^{-1}$	[2]
IAS		$1.03 \cdot 10^{-3}$	$2.70 \cdot 10^{-1}$	$1.53 \cdot 10^{-1}$	$3.00 \cdot 10^{-1}$	Данная работа
Эксп.	1933	$1.00 \cdot 10^{-1}$	$3.60 \cdot 10^{-2}$	$3.10 \cdot 10^{-2}$	$8.40 \cdot 10^{-2}$	[12]
IAS		$3.88 \cdot 10^{-3}$	$5.88 \cdot 10^{-1}$	$1.43 \cdot 10^{-2}$	$6.30 \cdot 10^{-2}$	Данная работа
Эксп.	2000	$9.49 \cdot 10^{-2}$	$3.48 \cdot 10^{-2}$	$1.19 \cdot 10^{-2}$	$1.52 \cdot 10^{-1}$	[13]
IAS		$3.58 \cdot 10^{-3}$	$5.57 \cdot 10^{-1}$	$1.17 \cdot 10^{-2}$	$6.22 \cdot 10^{-2}$	Данная работа
pMelts	2073	$8.08 \cdot 10^{-5}$	$5.86 \cdot 10^{-2}$	$8.32 \cdot 10^{-3}$	$2.07 \cdot 10^{-1}$	[2]
CMAS		$4.09 \cdot 10^{-5}$	$5.60 \cdot 10^{-2}$	$1.18 \cdot 10^{-2}$	$2.22 \cdot 10^{-1}$	[2]
IAS		$3.97 \cdot 10^{-4}$	$3.57 \cdot 10^{-1}$	$3.10 \cdot 10^{-2}$	$1.74 \cdot 10^{-1}$	Данная работа

Активности оксидов в расплавах системы CaO-MgO-Al₂O₃-SiO₂.

Как следует из табл. 3, различия в значениях активностей $a(SiO_2)$, найденных в работе [2] и в настоящей работе невелики. Различия в значениях a(MgO) значительны – в 30 раз, а в величинах $a(Al_2O_3)$ и a(CaO) – до 100 раз. Низкие значения активностей $a(Al_2O_3)$ и a(CaO), найденные Александером [2], нетипичны для расплавов системы CaO–MgO–Al₂O₃–SiO₂, содержащих приблизительно от 3 до 5 мол. % оксидов кальция и алюминия в отдельности.

Поскольку исследуемые составы представляют собой в основном силикаты магния, на рис. 1*a* сопоставлены результаты расчетов для расплавов системы MgO–SiO₂. Видно, что данные, полученные в работе [1] и в настоящей работе значительно отличаются. Рассчитанные Александером [1] активности оксидов также не соответствуют принятой диаграмме состояния системы MgO–SiO₂ (рис. 16). Эти зависимости не имеют перегибов и, следовательно, характеризуют гомогенную область. Однако согласно фазовой диаграмме сечения при рассматриваемых температурах пересекают гетерогенные области, содержащие твердые фазы.

Рис. 1. Активности оксидов (*a*) и диаграмма состояния системы $MgO-SiO_2(\delta)$.

Активности MgO (1-4) и SiO₂ (5-8) в системе MgO–SiO₂ при температурах 2073 (1, 3, 5, 7) и 2273 К (2, 4, 6, 8) рассчитаны:

1, 2, 5, 6 – Александером [1] по модели *СМАS*;

3, 4, 7, 8 – в настоящей работе по полуэмпирической модели в рамках теории идеальных ассоциированных растворов.

Диаграмма состояния системы MgO–SiO₂ приведена согласно данным [14]

Ранее, уже рассматривались термодинамические данные довольно близкого состава системы CaO-MgO-FeO-Al₂O₃-SiO₂ при температуре 2000 К [12, 13]. Этот состав содержал значительное количество примесей (до 15 вес. %), что, безусловно, могло исказить результаты, однако другой экспериментальной информации в настоящее время пока не имеется. Сопоставление представленных экспериментальных данных (табл. 3), полученных при температурах 1933 и 2000 К, показывает, что рассчитанные в настоящей работе активности оксидов в исследованном составе в пределах порядка соответствуют экспериментальным результатам, учитывая наличие примесей в образцах. Рассчитанные в настоящей работе более высокие значения a(MgO) и более низкие значения $a(SiO_2)$ по сравнению с экспериментальными данными для расплавов систем MgO-SiO₂ и CaO-MgO-FeO-Al₂O₃-SiO₂, вероятно, обусловлены большей близостью поля MgO.

Таким образом, выполненное в настоящей работе термодинамическое исследование показало, что в рамках теории регулярных растворов, лежащей в основе модели *pMelts* [4], не удается удовлетворительно рассчитывать равновесия с участием твердых фаз системы СаО-MgO-Al₂O₃-SiO₂. В случае модели *CMAS* [5, 6] ограничения вызваны применением уравнения требующего количества полуэмпирического Маргулеса, значительного экспериментальных данных в широком интервале температур и концентраций для расчетов параметров, описывающих расплав. Проведенное в настоящей работе сопоставление расчитанных по модели *CMAS* данных с имеющейся экспериментальной информацией выявило значительные расхождения между ними. В этой связи предлагаемый подход в рамках теории идеальных ассоциированных растворов представляется интересным и перспективным. Это подтверждается соответствием теоретически рассчитанных и экспериментальных данных о термодинамических свойствах ряда оксидных систем [15, 16].

Литература

1. Alexander C.M.O'D. // Met. Planet. Sci. 2001. V. 36. No. 2. P. 255-283.

2. Alexander C.M.O'D. // Met. Planet. Sci. 2002. V. 37. No. 2. P. 245-256.

3. Fedkin A.V., Grossman L., Ghiorso M.S. // Geochim. Cosmochim. Acta. 2006. V. 70. No. 2. P. 206-223.

4. *Ghiorso M.S.*, *Hirschmann M.M.*, *Reiners P.W.*, *Kress V.C.* // Geochem. Geophys. Geosystems. 2002. V. 3. No. 5. 1030, doi: 10.1029/2001GC000217.

5. Berman R.G. Thesis. Vancouver. // Univ. British Columbia. 1983. 153p.

6. Berman R.G., Brown T.H. // Geochim. Cosmochim. Acta. 1984. V. 48. No 4. P. 661-678.

7. Robie R.A., Hemingway B.S. // U.S. Geol. Surv. Bull. 1995. No. 2131. 461p.

8. Шорников С.И. // Электрон. науч.-информ. журн. Вестник Отделения наук о Земле РАН. № 1′(21), 2003.

URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2003/informbul-1/magm-10.pdf

9. Глушко В.П., Гурвич Л.В., Бергман Г.А., Вейц И.В., Медведев В.А., Хачкурузов Г.А., Юнгман В.С. Термодинамические свойства индивидуальных веществ. - Справочник (под ред. В.П. Глушко) // М.: Наука. 1978-1982. Т. 1-4.

10. Пригожин И., Дефэй Р. Химическая термодинамика // Новосибирск. Наука. 1966. 509с.

11. Hastie J.W., Plante E.R., Horton W.S., Bonnell D.W. // High Temp-High Press. 1982. V. 14. No 6. P. 669-679.

12. Шорников С.И / Автореф. дисс. к.х.н // СПб: ИХС РАН, 1993. 21с.

13. Шорников С.И. // Геохимия. 2008. Т. 46. № 7. С. 780-786.

14. Торопов Н.А., Барзаковский В.П., Лапин В.В., Курцева Н.Н. Диаграммы состояния силикатных систем. - Справочник. Выпуск первый. Двойные системы // Л.: Наука. 1969. 822с.

15. Шорников С.И. // Электрон. науч.-информ. журн. Вестник Отделения наук о Земле РАН. № 1′(25), 2007.

URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2007/informbul-1_2007/term-48.pdf

16. Шорников С.И. // Электрон. науч.-информ. журн. Вестник Отделения наук о Земле РАН. № 1′(26), 2008.

URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2008/informbul-1_2008/planet-36.pdf

Вестник Отделения наук о Земле РАН - №1(27) 2009

Информационный бюллетень Ежегодного семинара по экспериментальной минералогии, петрологии и геохимии 2009 года (ЕСЭМПГ-2009)

URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2009/informbul-1_2009/planet-33.pdf

Опубликовано 1 сентября 2009 г.

© Вестник Отделения наук о Земле РАН, 1997 (год основания), 2009 При полном или частичном использовании материалов публикаций журнала, ссылка на «Вестник Отделения наук о Земле РАН» обязательна