Электронный научно-информационный журнал «Вестник Отделения наук о Земле РАН» №1(27)′2009 ISSN 1819 - 6586

URL: http://www.scgis.ru/russian/cp1251/h dgggms/1-2009/informbul-1 2009/term-9.pdf

ОЛИВИНЫ ИЗ ТРУБКИ «ОБНАЖЕННАЯ» ЯКУТСКОЙ КИМБЕРЛИТОВОЙ ПРОВИНЦИИ. ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ СОБСТВЕННОЙ ЛЕТУЧЕСТИ КИСЛОРОДА

Жаркова Е.В., Кадик А.А. (ГЕОХИ РАН)

kadik@geokhi.ru; факс: (495) 938-20-54; тел.: (499) 137-72-00

Ключевые слова: собственная летучесть кислорода, оливин

Для исследований были выбраны 10 образцов оливинов (OI) из различных глубинных ксенолитов обнаруженных в кимберлитовой трубке «Обнаженная» Якутской кимберлитовой провинции. Эта трубка небольшая и неалмазоносная, однако, она широко известна из-за обилия, свежести и разнообразия глубинных ксенолитов. Выбранные нами для измерений собственной летучести кислорода (fO_2) оливины, содержащиеся в ксенолитах можно разделить на две группы: гранатовые и безгранатовые перидотиты. Эксперименты проводились на высокотемпературной установке, на основе двух твердых электрохимических ячеек. Температурный интервал измерений составлял от 750°C до 1100°C. Точность измерения составляла \pm 0,2 log fO_2 . Описание образцов и результаты определений fO_2 представлены в табл. 1, а так же на рис. 1-5. Микрозондовый анализ образцов представлен в табл. 2 (части 1 и 2).

Таблица 1 Описание образцов и значения коэффициентов «А» и «В» в эмпирической зависимости log fO₂=A- B/T°K для оливинов из трубки «Обнаженная»

Образец	Порода	A	В	R	n
	Безгранатовый перидотит «крупно-				
Об-24	зернистого семейства»	11,399	32628,7	0,998	8
	Безгранатовый перидотит				
Об-16	«мелкозернистого семейства»	21,205	43741,3	0,999	9
Об-73		26,406	48551,6	0,995	9
	Лерцолит «крупнозернистого				
	семейства» в начальной стадии				
Об-301	гранатизации, серпентинизация				
	слабая.				
	1. край желвака	15,234	36580,9	0,997	9
	2. центр желвака	13,792	34878,8	0,998	10
	Гранатовый лерцолит				
Об-62	Высокомагнезиальный	14,697	36451,4	0,994	9
Об-312	Высокомагнезиальный	18,08	40047,8	0,998	9
Об-152	Железисто-магнезиальный	17,003	38167,4	0,994	8
	Гранатовый пироксенит				
	Высокомагнезиальный, хромистый,				
Об-158	амфоболизированный	17,970	39760,8	0,996	9
	Ильменитсодержащие слюдистые				
Об-65	гранатовые перидотиты	17,339	39238,2	0,996	9
Об-93	(гарцбургит)	13,721	35752,0	0,995	9

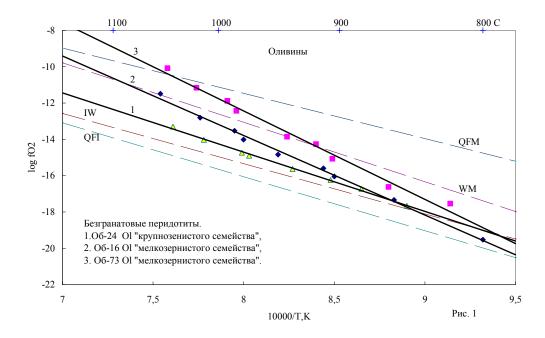
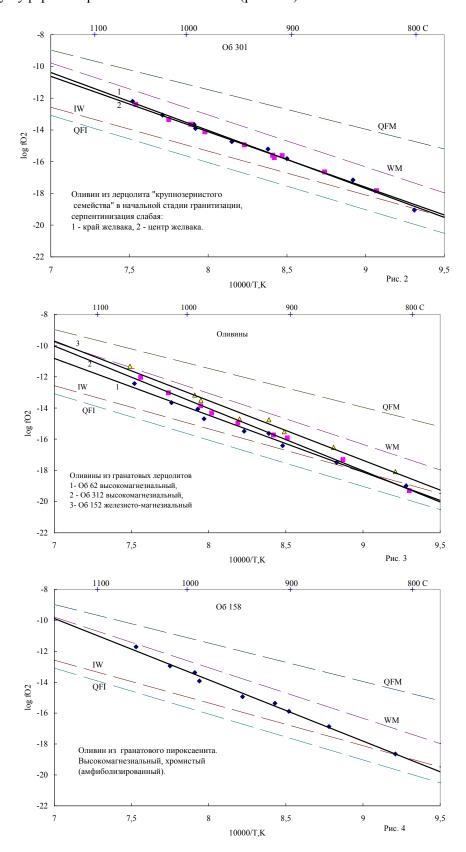
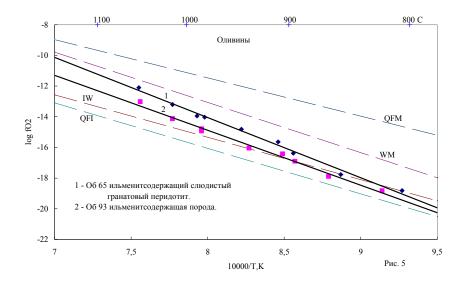

R – Коэффициент корреляции; n – количество экспериментальных точек

Таблица 2 (часть 1) Микрозондовый анализ оливинов из кимберлитовой трубки «Обнаженная»

Окислы	Об-24	Об-16	Об-73	Об-301 край	Об-301 центр
MgO	50,29	49,34	49,83	48,50	48,86
SiO_2	41,82	41,26	42,04	41,78	41,78
FeO	7,24	9,63	8,43	7,72	7,97
NiO	0,35	0,30	0,32	0,44	0,40
Cr_2O_3	0,03	0,01	0,03	0,15	0,17
V_2O_5	0,01	0,00	0,01	0,02	0,00
MnO	0,01	0,19	0,13	0,13	0,08
TiO ₂	-	0,03	0,00	0,00	0,00
Сумма	99,85	100,75	100,80	98,73	99,26
Fo	92,10	89,68	90,91	91,27	91,17
Fa	7,90	10,32	9,09	8,73	8,83


Таблица 2 (часть 2) Микрозондовый анализ оливинов из кимберлитовой трубки «Обнаженная»


Окислы	Об-62	Об-312	Об-152	Об-158	Об-65 [1]	Об-93
MgO	50,87	50,61	50,37	49,46	46,33	43,25
SiO_2	40,95	41,55	41,52	41,44	40,45	38,80
FeO	7,56	7,24	7,64	8,75	13,46	17,94
NiO	0,29	0,31	0,42	0,23	0,23	0,06
Cr ₂ O ₃	0,00	0,04	0,01	0,00	0,01	0,00
V_2O_5	0,00	0,03	0,06	0,01	_	-,00
MnO	0,12	0,14	0,14	0,17	0,12	0,15
TiO ₂	0,02	0,02	-	0,02	-	0,08
Сумма	99,81	99,94	100,17	100,08	100,79	100,28
Fo	91,93	92,15	91,64	90,59	-	80,93
Fa	8,07	7,85	8,36	9,41	_	19,07

В результате проведенных измерений можно констатировать, что оливины из перидотита «мелкозернистого семейства» обладают самой высокой собственной летучестью кислорода (рис. 1), тогда как оливины «крупнозернистого семейства» имеют собственную летучесть кислорода при температуре 1050°C на 2,0-2,5 порядка ниже и находятся области чуть выше буферного равновесия железо-вюстит (IW).

Так же следует отметить, что собственная летучесть оливинов взятых как из края желвака, так и из середины обладают одинаковой собственной летучестью кислорода, которая лежит в области между буферными равновесиями железо-вюстит-вюстит-магнетит (WM) (рис. 2). Собственная летучесть кислорода оливинов из гранатсодержащих ксенолитов расположена в области между буферными равновесиями IW - WM (рис. 3-5).

Выражаем благодарность А.В.Уханову за предоставленную коллекцию образцов. Работа выполнена при поддержке РФФИ 08-05-00377

Литература

I. Уханов A.В., Рябчиков И.Д., Харькив A.Д.. Литосферная мантия Якутской кимберлитовой провинции // М.: Наука. 1988. С.286.

Вестник Отделения наук о Земле РАН - №1(27) 2009

Информационный бюллетень Ежегодного семинара по экспериментальной минералогии, петрологии и геохимии 2009 года (ЕСЭМПГ-2009)

URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2009/informbul-1_2009/term-9.pdf Опубликовано 1 сентября 2009 г.

© Вестник Отделения наук о Земле РАН, 1997 (год основания), 2009 При полном или частичном использовании материалов публикаций журнала, ссылка на «Вестник Отделения наук о Земле РАН» обязательна