Fractionation of melelite in the differentiation of high calcium larnite-normative melts, close in composition to kimberlites

L. N. Kogarko

Vernadsky Institute of Geochemistry and Analytical Chemistry RAS, Moscow kogarko@geokhi.ru

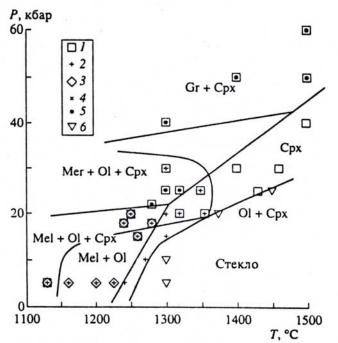
Key words: larnit-normative melts, kimberlites, melelite, nephelinites

Citation: Kogarko, L. N. (2011), Fractionation of melelite in the differentiation of high calcium larnite-normative melts, close in composition to kimberlites, *Vestn. Otd. nauk Zemle, 3*, NZ6036, doi:10.2205/2011NZ000166.

High calcium undersaturated larnite-normative magmas represent primary melts for ultramafic alkaline associations of the Globe including melelite-bearing rocks, ijolites, melteigites, carbonatites, nepheline syenites and kimberlites. In this work we for the first time investigated in details the melelite composition in the differentiation of Larnite-normative nepheliniteRuns were performed on piston-cylinder apparatus at 5-60kb pressure and 1050-1500°C

Table

Table						
	438	436	462	451	500	559
P, kbar	5	5	5	5	15	18
T, C ^o	1225°	1200	1130	1160	1260	1280
SiO2	43,14	43,56	42,72	42,46	42,46	42,59
Al2O3	3,97	4,22	6,73	4,93	6,82	7,16
FeO	3	3,61	3,64	3,7	2,82	2,83
MgO	10,97	10,66	8,66	10,39	9,03	8,85
CaO	37,73	36,39	34,84	36,67	36,34	35,96
Na2O	1,21	1,56	2,87	1,78	2,18	2,24
K2O			0,35		0,35	0,37
Mg#	86,77	84,2	80,97	83,3	85.2	85
Kagp	0.6	0.69	0.75	0.88	0.97	0.55


Experiments showed [Kogarko, Green, 1998] that larnite-normative nephelinite is characterized by very large field of melelite which is liquidus phase up to 20 kb.It means that melelite-bearing rocks were formed no deeper than60kmdeph.With the increasing pressure melelite became unstable and merwinite is liquidus phase according to the reaction Ca2 Mg Si2O7+L1=Ca3Mg(SiO4)2+L2.

Melelite composition depends on temperature in the investigated system. With the increasing temperature the sodium and alumina concentrations drop. For instance at 5 kb and 1130°C sodium oxide concentration in melelite is 2.87% and aluminium oxide is 6.73%.At 1225°C sodium oxide content is1.25% and alumina oxide 3.97%.Increasing pressure result in growing alumina oxide concentration in melelite (table).

Agpaitic index of crystallyzing melelite is less then unit (0.97-0.6) therefore fractionation of melelite will resul in increasing alkalinity and agpaitic index of resudial melt.Wide development of peralkaline veraities in ultramafic-alkaline assisiations containing larnite normative rocks result from large melelite field during crystal ization differentiation.This process is also facilitated by the fractionation of high alumina pyroxenes.

References

Kogarko, L. N., D Green (1998) Phase equilibria during melting of melelite nephelenite at pressuire up to 60 kb. *DAN*,*v359*, N4, pp.522-525

Fig.1. Phase diagram of larnite-normative nephelinite. 1-Clinipyroxene; 2-Olivine; 3-Melelite; 4merwinite; 5-garnet; 6-glass

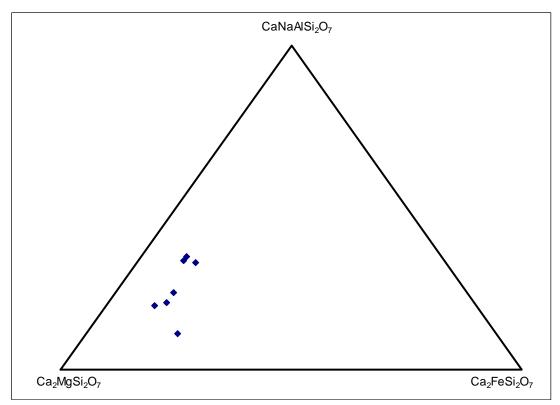


Fig.2. Melelite evolution during melting of larnite-normative nephelinite