Albite ordering under hydrothermal conditions

A. R. Kotelnikov¹, T. I. Tschekina²

¹Institute of Experimental Mineralogy RAS, Chernogolovka

²M. V. Lomonosov Moscow State University, Department of Geology, Moscow kotelnik@iem.ac.ru, fax: 8 (496) 524 4425, tel.: 8 (496) 524 44-25

Key words: synthesis, feldspar, structural ordering of albite.

Citation: Kotelnikov A.R, Tschekina T.I. (2011), Albite ordering under hydrothermal conditions, *Vestn. Otd. nauk Zemle*, *3*, NZ6053, doi:10.2205/2011NZ000183.

Structural state of albite is a good indicator of mineral genesis conditions. Earlier it has been shown [McKenzie, 1957; Taylor, 1967] that aluminum distribution between unequivalent positions in albite structure depends on the temperature. Quite disordering "high" albite contains 1/4 aluminum atoms in every alumosilicic tetrahedron (Al,Si)O₄. But in quite ordering "low" albite all aluminum places in tetrahedron T₁(0) [Taylor, 1967; Deer, et al., 1966]. Cell parameters of albite change depending on structural condition [Kroll&Ribbe, 1980]. It has been shown [Bambauer, et al., 1967a, b] the connection between albite structural state and distance between 131 and 1-31 peaks which is usual to mark as Δ 131. For high albite Δ 131 is 2.01 $(Cu-K_{\alpha})$ and for low albite $\Delta 131$ is $1.06(Cu-K_{\alpha})$. The dependence of $\Delta 131$ parameter of synthetic albite on temperature was studied in works of different authors [McKenzie, 1967; Mason, 1979; Martin, 1969; Senderov, et al., 1971]. It has to mark the works of Martin and Senderov in which the high alkalinity of solution is shown to essentially influence to the structural condition of albite: the increase of solution pH promoted the forming of more ordering albites. The experimental data connected the $\Delta 131$ parameter and temperature have been obtained in temperature interval 350-1000°C. But because of some causes estimated by kinetics of ordering processes the experimental data obtained at the temperature >400°C are in better agreement. The purpose of our work was to study the processes of ordering albite synthesis at low temperature (200–500°C) and to obtain the dependence of Δ 131 on temperature at T<500°C. Albite synthesis was carried out under hydrothermal conditions at temperature 200÷500°C and pressure 0.5÷1.0 kbar. Gel mixtures of albite composition with addition of 10 wt% amorphous SiO₂ were used as initial mixtures. Synthesis was carried out in NaOH and Na₂SiO₃*9H₂O solutions with the concentration of 2÷10 wt%. The alkaline solutions activate the synthesis of ordering feldspars as it has been previously shown [Martin, 1969; Senderov, et al., 1971]. Experimental duration was up to 65 days. The natural low albite was added to initial mixture (1÷2 wt% of charge mass). Low albite and quartz (and sometimes sodium silicates) were detected in run products. Microprobe analysis has shown a good correspondence of synthetic albites to NaAlSi₃O₈ formula. Cell parameters of albites were calculated by X-ray study data. The data obtained are presented in tabl. 1 and fig. 1. These high degree ordering albites with $\Delta 131=1.087$ (for Cu-K_q) were synthesized first at 200°C and 0.5 kbar.

The analytical dependence of albtite ordering degree on temperature has been calculated. This dependence may be used as geothermometer for albite-bearing mineral paragenesis:

t,(°C)=[-1255.2+1356.6*(Δ 131)] ±20°C.

This equation is worked adequately in temperature interval 100÷500°C.

Fig. 1. Temperature dependence of $\Delta 131$ parameter of synthetic albite

Table 1. Cell parameters of albite synthesized under hydrothermal conditions (t= 200 \div 500°C; P=0.5-1.0 kbar) in solutions of sodium hydroxide and sodium silicate

N	$t/p^{I)}$	$a,[A]^{2)}$	b, [A]	c, [A]	α, [°]	β, [°]	γ, [°]	$V, [A]^3$	$\Delta 131^{3)}$
6311	200/0.5	8.136	12.786	7.159	94.26	116.59	87.69	664.1	1.10
6312	200/0.5	8.137	12.788	7.159	94.25	116.60	87.71	664.2	1.087
6313	200/0.5	8.137	12.787	7.159	94.26	116.60	87.69	664.2	1.102
6338	250/0.5	8.137	12.787	7.159	94.27	116.60	87.70	664.2	1.107
6339	250/0.5	8.139	12.786	7.159	94.26	116.61	87.70	664.2	1.092
6340	250/0.5	8.136	12.783	7.160	94.29	116.59	87.65	664.0	1.091
5703	400/1	8.141	12.795	7.154	94.21	116.60	87.96	664.6	1.211
5834	400/1	8.140	12.793	7.154	94.20	116.60	87.97	664.4	1.210
5840	425/1	8.140	12.795	7.152	94.16	116.58	88.08	664.4	1.242
5841	425/1	8.140	12.791	7.151	94.12	116.57	88.11	664.3	1.244
5846	450/1	8.141	12.802	7.148	94.11	116.57	88.20	664.5	1.278
5746	450/1	8.141	12.802	7.146	94.09	116.55	88.23	664.5	1.283
5850	500/1	8.141	12.801	7.147	94.08	116.55	88.24	664.6	1.281

- 1) t/p temperature (°C)/pressure (kbar);
- 2) parameters means are presented in angstrom, angles in degree;
- 3) $\Delta 131$ distance between 131 and 1-31 peaks (Cu-K_{a1})

References

Bambauer, H. U., E. Eberhard, K. Viswanathan (1967b), The lattice constants and related parameters of plagioclase (low), *Schw. miner. petrogr. Mitt.*, Bd.47, N 1, pp.351–364.

Bambauer, H. U., M. Corlett, E. Eberhard (1967a), Diagrams for the determination of plagioclases using X - ray powder methods, *Schw. miner.petrogr. Mitt.*, Bd. 47, N1, pp. 333–350.

Deer, W. A., R. A. Howie, J. Zussmann (1966), Rock forming minerals. *Bd. 4 Framework silicates*. M., Mir, 481 p.

Kroll, H., P. H. Ribbe (1980), Determinative diagrams for Al, Si order in plagioclases, *Amer.Miner.*, v. 65, N 5–6, pp.449–457.

Martin, R. F. (1969), The hydrothermal synthesis of low albite, *Contrib. Mineral.Petrol.*, v. 23, pp. 323–339.

Mason, R. A. (1979), The ordering behaviour of albite in aqueous solutions at 1 kbar, *Contrib.Mineral.Petrol.*, v. 68, pp. 269–273.

McKenzie, W. S. (1957), The crystalline modification of NaAlSi₃O₈, *Amer.J.Sci.*, v. 255, N7, pp. 481–516.

KOTELNIKOV AND TSCHEKINA: ALBITE UNDER HYDROTHERMAL CONDITIONS

Senderov, E. E., T. I. Tschekina, K I. Tobelko (1971), The investigation of low albite crystallization, *Geochimia*, N 8, pp. 963–973.

Taylor, U. H. (1967), Framework silicates: feldspar. In: W. L. Bragg, G.F. Claringbull. *Crystalline structures of minerals*. M., Mir, 391 p.