Распределения внеземных и земных хромитовых зёрен в известняках ордовика Швеции и Китая

В. А. Алексеев

Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва AVAL37@chgnet.ru; тел.: 8 (499) 137 8614

Ключевые слова: ископаемые метеориты, радиационный возраст

Ссылка: Алексеев, В. А. (2011), Распределения внеземных и земных хромитовых зёрен в известняках ордовика Швеции и Китая, *Вестник ОНЗ РАН, 3*, NZ6004, doi:10.2205/2011NZ000134.

В известняках среднего ордовика на юге Швеции в карьере Thorsberg найдено более 80 метеоритов, которые были идентифицированы как фрагменты родительского тела (астероида) L-хондритов, разрушенного в катастрофическом столкновении в космосе ~470 млн. лет назад [Schmitz et al., 1997; Heck et al., 2004]. В этом карьере, наряду с метеоритами, найдены также реликтовые осадочно-дисперсные хромитовые зёрна, которые по химическому составу были разделены на две группы – внеземные (ЕС) и земные (ОС) зерна. Аналогичные зёрна найдены и в других карьерах Швеции, а также в Китае, в осадочных слоях, одновозрастных со слоями с ископаемыми метеоритами [Cronholm, Schmitz, 2010]. Концентрация ЕС зёрен в таких слоях в ряде случаев почти на два порядка величины оказывается более высокой, чем в слоях, сформировавшихся в другое время. Высокие содержания захваченных газов солнечного состава во внеземных зёрнах позволили идентифицировать эти зёрна как микрометеориты [Heck et al., 2008; Meier et al., 2010]. На рис. 1 видно, что различие в содержании одного из изотопов благородных газов – ²⁰Ne во внеземных и земных хромитовых зёрнах превышает два порядка величины. Увеличение содержания ²⁰Ne с уменьшением массы зёрен обусловлено увеличением удельной поверхности зёрен при уменьшении их размеров. Близкий наклон линий регрессии (параметр b в уравнении линий, табл. 1) свидетельствует о поверхностно-коррелированном механизме захвата газов как солнечного (для ЕС зёрен), так и земного (для ОС) происхождения.

Рис. 1. Содержание ²⁰Ne в индивидуальных внеземных (1) и земных (2) хромитовых зёрнах в зависимости от массы зёрен (по данным [*Meier et al.*, 2010]). Пунктир – линии регрессии.

АЛЕКСЕЕВ: ХРОМИТОВЫЕ ЗЁРНА В ИЗВЕСТНЯКАХ ОРДОВИКА

Высокая распространённость ископаемых метеоритов (в карьере Thorsberg) и реликтовых хромитовых зёрен (во всех карьерах) дали основание для предположения, что поток внеземного вещества на Землю в течение нескольких миллионов лет ~470 млн. лет назад был, по крайней мере, на два порядка величины выше, чем в настоящее время [Schmitz et al., 2003; Alwmark, Schmitz, 2009].

Таблица 1. Параметры уравнения линий регрессии $lg({}^{20}Ne) = a + b \times lgm$ в зависимости между массой (*m*, мкг) и содержанием ${}^{20}Ne$ (10^{-8} см 3 г $^{-1}$) для внеземных (EC) и земных (OC) индивидуальных хромитовых зёрен из карьера Thorsberg, южная Швеция ${}^{1)}$

Хромиты	a	b	R
EC	4.14 ± 0.1	-0.93 ± 0.02	-0.77 ± 0.08
OC	1.41 ± 0.3	-1.03 ± 0.13	-0.88 ± 0.07

¹⁾По данным [*Meier et al.*, 2010].

Однако, в слоях, обогащённых внеземными хромитовыми зёрнами, наблюдается высокая концентрация и земных зёрен (рис. 2).

Рис. 2. Распределения внеземных (а, б, в) и земных (а', б', в') хромитовых зёрен в известняках ордовика в карьерах Швеции – Thorsberg + Hällekis (а, а'), Killeröd (б, б') и Китая – Puxi River (в, в'). H – глубина колонки. Пунктирными линиями выделены интервалы, соответствующие времени накопления отложений с ископаемыми метеоритами в карьере Thorsberg. (По данным [Schmitz, Häggström, 2006; Häggström, Schmitz, 2007; Cronholm, Schmitz, 2010].)

Для сопоставления концентраций зёрен обеих популяций введём величину коэффициента обогащения для внеземных (К_{EC}) и земных (К_{OC}) зёрен:

 $K_{EC} = (N_{EC}/M)_{FM}/(N_{EC}/M)_{NFM}$ и $K_{OC} = (N_{OC}/M)_{FM}/(N_{OC}/M)_{NFM}$.

Здесь N – количество внеземных (с индексом EC) и земных (OC) зёрен, найденных в образце известняка массой M; индекс FM относится к слоям известняка, одновозрастным с таковыми, содержащими ископаемые метеориты; индекс NFM относится к слоям, сформировавшимся в другое время. N_{EC}/M и N_{OC}/M – соответствующие концентрации внеземных и земных зёрен в известняке. Из данных, приведённых в таблице 2, видно, что,

АЛЕКСЕЕВ: ХРОМИТОВЫЕ ЗЁРНА В ИЗВЕСТНЯКАХ ОРДОВИКА

например, в карьерах Thorsberg и Hällekis концентрация внеземных зёрен в слоях, одновозрастных с таковыми, обогащёнными метеоритами, превышает концентрацию EC зёрен в слоях, сформировавшихся в другое время, в 49 ± 13 раз. При этом коэффициент обогащения для земных зёрен составил $K_{OC} = 28 \pm 9$, что в пределах ошибки согласуется с величиной K_{EC} . (При расчёте ошибок принималось, что $\sigma(N) = \sqrt{N}$.) Для всей совокупности данных (табл. 2) величина обогащения внеземными хромитовыми зёрнами составила в среднем 40 ± 8 . Однако, повышенное содержание хромитовых зёрен земного происхождения ($K_{OC} = 23 \pm 7$) в слоях, обогащенных внеземными хромитовыми зёрнами, может свидетельствовать о процессах обогащения на дне моря из-за гидродинамической сортировки, что особенно эффективно могло проявиться при формировании отложений известняков в Швеции [*Cronholm, Schmitz*, 2010].

Карьер	Слой 2)	М, кг	N _{EC}	Noc	N_{EC}/M , кг ⁻¹	N _{OC} /M, кг ⁻¹	$K_{EC}^{3)}$	$K_{OC}^{3)}$
Thorsberg	FM	173.9	332	142	1.91 ± 0.11	0.82 ± 0.07	49 + 13	28 + 9
&Hällekis	NFM	407.1	16	12	0.039 ± 0.010	0.029 ± 0.009	19 ± 15	20 - 7
Killeröd	FM	133.5	318	73	2.38 ± 0.14	0.55 ± 0.07	37 ± 12	42 ± 30
	NFM	153.4	10	2	0.065 ± 0.021	0.013 ± 0.010	57 - 12	00
Puxi River	FM	165.3	283	25	1.71 ± 0.10	0.15 ± 0.03	26 ± 10	>5
	NFM	122.5	8	1	0.065 ± 0.023	< 0.03	20 10	C
Bce	FM	472.7	933	240	1.97 ± 0.07	0.51 ± 0.03	40 ± 8	23 ± 7
	NFM	682.9	34	15	0.050 ± 0.009	0.022 ± 0.006	10 - 0	

Таблица 2. Распространённость внеземных (ЕС) и земных (ОС) хромитовых зёрен в карьерах Швеции (Thorsberg, Hällekis, Killeröd) и Китая (Puxi River)¹⁾

Примечания:

¹⁾ По данным [Schmitz, Häggström, 2006; Häggström, Schmitz, 2007; Cronholm, Schmitz, 2010];

²⁾ FM и NFM – слои, содержащие и не содержащие ископаемые метеориты, соответственно;

³⁾ К_{ЕС} = (N_{EC}/M)_{FM}/(N_{EC}/M)_{NFM}; К_{ОС} = (N_{OC}/M)_{FM}/(N_{OC}/M)_{NFM}. Значения К_{ЕС} и К_{ОС} показывают степень обогащения известняков соответственно внеземными и земными хромитовыми зёрнами.

С учётом этих данных можно, по-видимому, говорить об увеличении потока *микрометеоритов* на всю Землю после разрушения родительского тела L-хондритов, вероятнее всего, в несколько раз, но не на 2 порядка величины, как предполагалось ранее. При этом, как было показано [*Алексеев*, 2010], высокая концентрация ископаемых *метеоритов* на юге Швеции обусловлена, вероятнее всего, падением одного метеоритного дождя в районе карьера Thorsberg около 470 млн. лет назад.

Работа выполнена при финансовой поддержке программы П4 Президиума РАН

Литература

Алексеев, В. А. (2010), Радиационная история ископаемых метеоритов Швеции, *Астрон. Вестник*, 44, № 4, pp. 336-344.

Alwmark, C., B. Schmitz (2009), The origin of the Brunflo fossil meteorite and extraterrestrial chromite in mid-Ordovician limestone from the Gärde quarry (Jämtland, central Sweden), *Meteorit. Planet. Sci.*, 44, No. 4, pp. 95-106.

Cronholm, A., B. Schmitz (2010), Extraterrestrial chromite distribution across the mid-Ordovician Puxi River section, central China: Evidence for a global major spike in flux of Lchondritic matter, *Icarus*, 208, No. 1, pp. 36-48.

Häggström, Th., B. Schmitz (2007), Distribution of extraterrestrial chromite in Middle Ordovician Komstad Limestone in the Killeröd quarry, Scania, Sweden, *Bull. Geol. Soc. Denmark*, 55, pp. 37-58.

АЛЕКСЕЕВ: ХРОМИТОВЫЕ ЗЁРНА В ИЗВЕСТНЯКАХ ОРДОВИКА

Heck, P. R., B. Schmitz, H. Baur, A.N. Halliday, R. Wieler (2004), Fast delivery of meteorites to Earth after a major asteroid collision, *Nature*, 430, No. 6997, pp. 323-325.

Heck, P. R., B. Schmitz, H. Baur, R. Wieler (2008), Noble gases in fossil micrometeorites and meteorites from 470 Myr old sediments from southern Sweden, and new evidence for the L-chondrite parent body breakup event, *Meteorit. Planet. Sci.*, 43, No. 3, pp. 517-528.

Meier, M. M. M., B. Schmitz, H. Baur, R. Wieler (2010). Noble gases in individual L chondritic micrometeorites preserved in an Ordovician limestone, *Earth Planet. Sci. Lett.*, 290, No.1-2, pp. 54-63.

Schmitz, B., Th. Häggström (2006), Extraterrestrial chromite in Middle Ordovician marine limestone at Kinnekulle, southern Sweden – Traces of a major asteroid breakup event, *Meteorit. Planet. Sci.*, 41, No. 3, pp. 455-466.

Schmitz B., Th. Häggström, M. Tassinari (2003), Sediment-dispersed extraterrestrial chromite traces a major asteroid disruption event, *Science*, 300, No. 5621, pp. 961-964.

Schmitz, B., B. Peucker-Ehrenbrink, M. Lindström, M. Tassinari (1997), Accretion rates of meteorites and cosmic dust in the Early Ordovician, *Science*, 278, No. 5335, pp. 88-90.