Вариации изотопного состава и элементных соотношений C, N, He, Ar во флюидных включениях в закалочных стеклах MORB по данным ступенчатого дробления

А. И. Буйкин¹, А. Б. Верховский², В. А. Гриненко¹, С. А. Силантьев¹ ¹Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва <u>buikin@geokhi.ru</u>

²Открытый Университет, Милтон Кинс, Великобритания

Ключевые слова: изотопы легких элементов, флюидные включения, мантия, срединноокеанические хребты

Ссылка: Буйкин, А. И., А. Б. Верховский, В. А. Гриненко, С. А. Силантьев (2011), Вариации изотопного состава и элементных соотношений С, N, He, Ar во флюидных включениях в закалочных стеклах MORB по данным ступенчатого дробления, *Вестник OH3 PAH, 3*, NZ6016, doi:10.2205/2011NZ000146.

Изучению флюидных включений в мантийных породах и минералах посвящено немало работ. Среди них большую долю имеют работы, направленные на исследования петрологических характеристик, таких как Р-Т условия образования включений и их химический состав. В гораздо меньшей степени изучены изотопные характеристики составляющих включения газов. Между тем, именно изотопные исследования могут дать исчерпывающую информацию об источнике флюидов и процессах флюид-породного взаимодействия, являющихся одним из факторов образования и преобразования геологических объектов.

В продолжение инициированной нами работы по изучению изотопных характеристик флюидной фазы мантийных пород с применением метода ступенчатого дробления [Буйкин и ∂p ., 2009] мы исследовали вариации изотопного состава углерода, аргона, азота и их элементные соотношения во флюидных включениях в стеклянных корках базальтов, отобранных в 31-ом рейсе НИС «Профессор Логачев» в рифтовой долине Срединно-Атлантического хребта на 20°–22°30'с.ш. и представленных типичными N-MORB (K₂O/TiO₂ = 0.08–0.10). Методика пробоподготовки, выделения и разделения газов подробно описана в [Буйкин и ∂p ., 2010].

Изотопный состав углерода и кислорода в выделенном CO_2 измерялся на массспектрометре Thermo Finnigan Delta Plus (ГЕОХИ РАН) с использованием системы «microvolume» с холодным пальцем, обеспечивающей надежное измерение малых количеств газа (0,01–0,02 см³). Изотопный анализ аргона и азота проводился на высокочувствительном комплексе из трех масс-спектрометров Finesse в Открытом Университете (Милтон Кинс, Великобритания), там же были получены данные по содержанию гелия и углерода (в форме CO_2) в исследуемых образцах. Следует отметить, что анализ Не, С, N и Ar проводился одновременно из одной навески каждого образца. Полученные данные представлены на рис. 1-9 и в табл. 1.

Результаты и обсуждение.

Значения δ^{13} С в образцах варьируют от -2.8 до -9.5 ‰, δ^{18} О – от +7.2 до +18.8 ‰. Эти данные попадают в диапазон значений, полученных ранее для валовых анализов флюидных включений в стеклах MORB [*Pineau et al.*, 2004, Cartigny et al., 2001 и др.]. Как уже было отмечено в работе [*Буйкин и др.*, 2009], в целом, с увеличением количества ударов увеличивается значение δ^{13} С в образце (рис. 1) – от близкого к атмосферному значению (-7.5 ‰) к мантийному (около -3 ‰). Такой тренд может отражать смешение между мантийным и неким контаминирующим компонентами CO₂ образца, подобно тем линиям смешения (мантияатмосфера), которые наблюдаются для благородных газов в мантийных породах [напр., *Trieloff et al.*, 2000; *Buikin et al.*, 2005]. Контаминация может происходить как в источнике базальтовых расплавов, так и при их излиянии и остывании при контакте с морской водой. Если источником контаминации базальтов является океаническая вода, то следует рассматривать все формы углерода, находящиеся в ней: растворенный CO₂ атмосферы, карбонаты и органическое вещество. Все это может превращаться в CO₂ при температурах базальтовой магмы.

Рис. 1. Вариации изотопного состава углерода в зависимости от количества ударов по образцу в вакууме

Именно примесь органогенного CO₂ может отвечать за легкий углерод с δ^{13} C ниже -7.5‰. Следует отметить, что не во всех образцах увеличение δ^{13} C происходит закономерно с увеличением количества ударов. В некоторых случаях углерод показывает примерно одинаково низкие немантийные значения δ^{13} C, например, образец 323-1 II (рис. 1). Этот образец изучался дважды и показал плохую сходимость результатов, что может быть связано с негомогенностью распределения включений внутри образца. Другое стекло (133-4), которое также изучалось дважды, показало в целом неплохую сходимость, подтверждающую тренд от «органогенных» к мантийным значения δ^{13} C.

Наблюдается также тенденция к уменьшению значений δ^{13} С с увеличением количества газа во фракции (рис. 2a). Более четко эта тенденция видна на рис. 2b, где показана зависимость между вариациями валовых значений δ^{13} С и количеством CO₂ в образцах. Косвенно это может служить подтверждением нашего предположения о контаминации образцов компонентом с легким изотопным составом углерода. Нельзя также исключить, что этот тренд обусловлен изотопным фракционированием углерода в системе расплав-флюид.

Рис. 2. Вариации изотопного состава углерода в зависимости от количества ударов по образцу во фракциях дробления (а) и для валовых составов (b)

В таблице 1 представлены данные по изотопному составу азота и аргона и содержанию углерода, азота, аргона и гелия во флюидных включениях в описанных выше закалочных стеклах. Концентрации газов в образцах варьируют незначительно – не более чем в 2 раза, лишь для азота составляя 5 раз. В целом, содержания летучих во фракциях дробления коррелируют между собой в изученных образцах (рис. 3, 4), что говорит о том, что они находятся в одинаковых включениях и об их общем источнике.

БУЙКИН И ДР.: С, N, HE, AR ВО ФЛЮИДНЫХ ВКЛЮЧЕНИЯХ В СТЕКЛАХ МОВВ

		кий хреос	$\frac{40}{40}$ År	$\frac{1, 20 - 22, 30 \text{ C.m.}}{40}$ Ar 8^{15} N		4 40	
кол-во ударов	10^{-8} ccm/g	C, ng	N ₂ , ng	10^{-8} ccm/g	% атм	$^{40}Ar/^{36}Ar$	⁴ He/ ⁴⁰ Ar*
31L 133-4 (1.02534 g)							
6	585	48504	50	35	-4.6	606	32
24	285	41993	25	18	-4.2	1798	19
70	215	23253	18	11	-4.2	1951	24
150	69	3246	4	31	1.6	1151	3
1150	68	137	13	32	5.9	533	5
Сумма	1222	117133	111	127	-3.0	1000	14
31L 323-2 (0.82764 g)							
12	834	45564	362	178	-6.3	641	9
40	260	15199	90	40	-7.5	6494	7
160	146	-	17	9	-2.7	1243	22
1160	196	2	9	4	-0.8	337	372
Сумма	1435	60765	478	231	-6.3	1672	8
31L 315-1 (1.00379 g)							
4	279	38213	98	55	-5.7	10696	5
14	229	25944	63	35	-5.2	9579	7
50	189	15184	32	24	-4.0	3213	9
200	144	111	10	6	-5.3	2640	25
1200	174	-	7	38	0.1	384	20
Сумма	1016	79452	210	159	-5.1	6510	7
31L 323-1 (1.05235 g)							
2	316	28406	149.4	53	-7.2	15567	6
8	267	24791	129.5	46	-7.2	24471	6
24	266	22766	122.9	43	-7.1	27961	6
120	226	8419	50.9	29	-6.8	25611	8
1120	215	9	73.0	35	-9.7	313	110
Сумма	1290	84391	526	206	-7.5	24593	6

Таблица. 1. Элементный и изотопный состав газов во флюидных включениях в закалочных стеклах N-MORB (Срединно-Атлантический хребет, 20°–22°30'с.ш.)

Рис. 3. Ковариации содержаний углерода и азота во фракциях дробления

Рис. 4. Ковариации содержаний аргона и азота во фракциях дробления

Рис. 5. Зависимость вариаций отношения ⁴⁰Ar/³⁶Ar от изотопного состава азота во фракциях дробления

Изотопный состав аргона указывает на присутствие значительного количества атмосферного компонента в некоторых образцах (наибольшее в образце 31L-133-4, где общее отношение 40 Ar/ 36 Ar = 1000, а δ^{13} С также близко к атмосферному для CO₂ ~ -7.5‰). С увеличением значения ⁴⁰Ar/³⁶Ar (т.е. с увеличением доли мантийного компонента) повышаются значения δ^{13} С в образцах. Исключение составляет образец 31L-323-1, в котором при δ^{13} С = -5.4 ‰ отношение ⁴⁰Аг/³⁶Аг достигает 24593 – типично мантийное значение для закалочных стекол MORB. Возможно, здесь также сказалось влияние изотопного фракционирования углерода в магматическом процессе и при его распределении в системе флюид-расплав. Как видно из рис. 5, в этом образце и значение δ^{15} N смещено в сторону более легкого азота (-7.5 ‰, вместо -4÷-5‰) на фоне типично мантийного значения отношения ⁴⁰Ar/³⁶Ar, что может служить независимым свидетельством изотопного фракционирования. Однако не исключено, что в мантийный источник могло попасть богатое органикой вещество, которое впоследствии было гомогенно перемешано, что и дало такое низкое значение по δ^{15} N. Следует отметить, что в образце 323-1 изотопный состав азота во фракциях дробления очень однороден, вне зависимости от вариаций изотопного состава аргона (за исключением последней фракции, в которой было сложно правильно учесть вклад бланка).

Рис. 6. Корреляции отношений Ar/N_2 и значений $\delta^{15}N$ для валовых составов образцов

Рис. 7. Диаграмма в координатах ⁴⁰Ar/³⁶Ar - N₂/Ar для валовых составов образцов, показывающая смешение между морской водой (или атмосферой) и мантией

БУЙКИН И ДР.: С, N, HE, AR ВО ФЛЮИДНЫХ ВКЛЮЧЕНИЯХ В СТЕКЛАХ МОВВ

Изотопный состав азота во фракциях дробления в целом, варьирует в широких пределах – от -10‰ до +6‰, однако средние значения составляют более узкий диапазон: от -3 до -7.5 ‰. Тяжелый азот выходил в последних ступенях дробления при очень малых количествах газа. Мы пока не можем точно определить, являются ли для закалочных стекол плюсовые значения по азоту артефактом (связанным с контаминацией поверхности образцов органикой), или они могут отражать какие-то реальные источники и/или процессы захвата флюидных включений. В литературе также существуют данные о тяжелом (положительном) азоте в стеклянных корках MORB [например, *Marty and Zimmermann*, 1999], где одним из источников такого азота предполагается вещество океанических осадков.

На рисунках 6 и 7 данные для валовых составов образцов представлены в координатах $Ar/N_2-\delta^{15}N$ и ${}^{36}Ar/{}^{40}Ar$ - $N_2/{}^{40}Ar$; здесь также нанесены точки составов мантии, атмосферы и морской воды. На рис. 6 видна прямая корреляция между значениями $\delta^{15}N$ и отношением Ar/N_2 в образцах, отображающая процесс смешения, причем для наиболее контаминированного атмосферным аргоном образца (133-4) виден наиболее существенный вклад морской воды. Другой конечный член смешения отвечает оценкам N-MORB по отношению Ar/N_2 [*Marty and Zimmermann*, 1999], но с существенно более легким изотопным составом азота (около -7.5‰). Данные на рис. 7 также указывают на смешение между морской водой и мантией N-MORB для трех образцов. Для одного образца (323-2) можно предположить смешение между мантией и атмосферным компонентом.

Рис. 8. Корреляции между отношениями He/N₂ и C/N₂ для валовых составов образцов

Рис. 9. Вариации значений C/⁴⁰Ar в зависимости от отношений C/N₂ для валовых составов образцов

Средние значения отношения ${}^{4}\text{He}/{}^{40}\text{Ar}^{*}$ (где ${}^{40}\text{Ar}^{*}$ - избыточный или захваченный радиогенный аргон, рассчитанный из предположения, что весь ${}^{36}\text{Ar}$ является атмосферным) составляют 6-8 что в несколько раз выше расчетного для мантии (~1.5), однако указывает на относительно небольшое элементное фракционирование (за счет разной растворимости гелия и аргона в базальтовом расплаве) при образовании пузырьков, в сравнении с большинством опубликованных данных для закалочных стекол МОRB, где значение ${}^{4}\text{He}/{}^{40}\text{Ar}^{*}$ достигает нескольких десятков и даже сотен. В образце 31L-133-4 эта величина составляет 14. На элементное фракционирование, вызванное различием растворимостей газов в базальтовом расплаве указывают и данные в координатах $\text{He}/\text{N}_2\text{-C/N}_2$ (рис. 8), где увеличение валовых отношений гелия и углекислоты (имеющих примерно одинаковую растворимость в расплаве) к азоту происходит синхронно.

Данные на рис. 9 также могут быть объяснены влиянием элементного фракционирования в ходе захвата пузырьков, хотя некоторые авторы предпочитают говорить о существовании богатого углеродом резервуара, ответственного за высокие (более 1000) отношения углерода к азоту.

Работа поддержана грантом РФФИ 09-05-00678а и Программой ОНЗ РАН №4.

БУЙКИН И ДР.: С, N, HE, AR ВО ФЛЮИДНЫХ ВКЛЮЧЕНИЯХ В СТЕКЛАХ МОВВ

Литература

Буйкин А.И., Ю.А. Невинный, В.И. Устинов, В.А. Гриненко, Е.П. Смирнова, В.С. Севастьянов, Е.В. Корочанцева, С.А. Силантьев (2009) Изучение вариаций изотопного состава легких элементов (С, О) в мантийных породах методом ступенчатого дробления. Десятая Международная Конференция «Физико-химические и петрографические исследования в науках о Земле», Москва, 26-28 октября 2009 г. Материалы конференции. С. 74-78.

Буйкин А.И., Ю.А. Невинный, В.И. Устинов, В.А. Гриненко, Е.П. Смирнова, В.С. Севастьянов, Е.В. Корочанцева, С.А. Силантьев (2010) Высоковакуумная установка для изучения изотопного состава легких элементов из флюидных включений в мантийных породах методом ступенчатого дробления. Электронный научно-информационный журнал «Вестник Отделения наук о Земле РАН» №2, <u>doi:10.2205/2010NZ000025</u>

Buikin, A. I., M. Trieloff, J. Hopp, T. Althaus, E. V. Korochantseva, W. H. Schwarz and R. Altherr (2005) Noble gas isotopes suggest deep mantle plume source of late Cenozoic mafic alkaline volcanism in Europe, *Earth and Planetary Science Letters V. 230*, pp. 143-162.

Cartigny, P., N. Jendrzejewski, F. Pineau, E. Petit, M. Javoy (2001) Volatile (C, N, Ar) variability in MORB and the respective roles of mantle source heterogeneity and degassing: the case of the Southwest Indian Ridge. *Earth Planet. Sci. Lett. V. 194*, pp. 241-257.

Marty, B., L. Zimmermann (1999) Volatiles (H, C, N, Ar) in Mid-Ocean ridge basalts: Assessment of shallow-level fractionation and characterization of source composition. *Geochim. Cosmochim. Acta. V. 63*, pp. 3619-3633.

Pineau, F., S. Shilobreeva, R. Hekinian, D. Bideau, M. Javoy (2004) Deep-sea explosive activity on the Mid-Atlantic Ridge near 34°50'N: a stable isotope (C, H, O) study. *Chemical Geology, V. 211*, pp. 159-175.

Trieloff, M., J. Kunz, D. A. Clague, D. Harrison and C. J. Allègre (2000) The nature of pristine noble gases in mantle plumes. *Science, V. 288*, pp. 1036-1038.