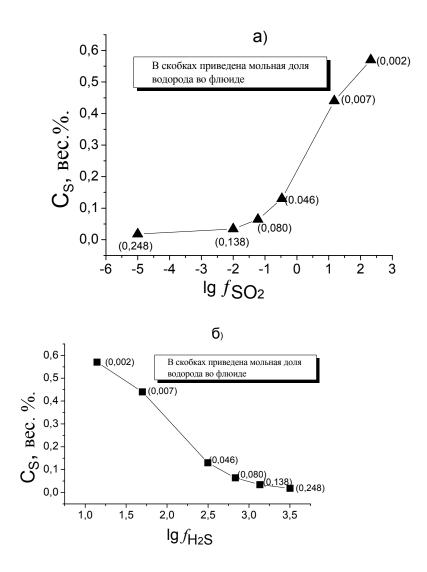
Влияние железа и окислительно-восстановительных условий на растворимость серы во флюидсодержащих силикатных расплавах

П. Н. Горбачев, Н. И. Безмен Институт экспериментальной минералогии РАН, Черноголовка gorpav@iem.ac.ru

Ключевые слова: редокс условия, силикатные расплавы

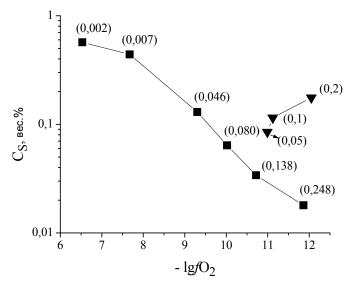
Ссылка: Горбачев, П. Н., Н. И. Безмен (2011), Влияние железа и окислительно-восстановительных условий на растворимость серы во флюидсодержащих силикатных расплавах, *Вестник ОНЗ РАН, 3*, NZ6023, doi:10.2205/2011NZ000153.

Введение. Сульфидно-силикатное расслоение (ликвация) силикатных расплавов оказывает существенное влияние на поведение халькофильных элементов в магматических процессах, является основным механизмом формирования сульфидных месторождений цветных и благородных металлов. Для выяснения условий сульфидно-силикатной ликвации важно знать растворимость серы в магмах при различных физико-химических параметрах. Среди них важная роль принадлежит летучести кислорода fO_2 , характеризующей окислительно-восстановительные условия, которые в магматических системах варьируют в широком интервале. Влиянию fO_2 на растворимость серы в модельных и природных безводных «сухих» силикатных расплавах базальтового состава с O-S флюидом при атмосферном давлении посвящено большое число работ, результаты которых обобщены в обзоре [Carroll and Webster, 1994; Haughton et.al., 1974]. В данной работе приводятся результаты экспериментального изучения влияния состава расплава на растворимость серы во флюидсодержащих силикатных расплавах в широком интервале окислительно-восстановительных условий, от Mn-MnO (MMO) до Fe-FeO (IW) буферов.


Методика эксперимента. Все эксперименты проводились в сосуде высокого газового давления с контролируемым содержанием водорода во флюиде, что позволяло задавать fO_2 в системе расплав-водный флюид Ar-H2 газовой смесью. При fO_2 , от Mn-MnO (MMO) до Ni-NiO (NNO) буферов для контроля fO_2 использовалась стандартная двухампульная методика кислородных буферов, длительность работы которых поддерживалась Ar-H2 газовой смесью. При более восстановительных условиях fO_2 задавалась составом Ar-H2 смеси. Летучесть серы fS_2 задавалась Pt-PtS буферной реакцией, ее значение рассчитывалась по термохимическим данным [Barin, 1995] при 1200°С и 2 кбар $f(S_2)$ =10^{-0.394} бар. Длительность экспериментов составляла 3 суток, температура регулировалась с точностью \pm 5°С, давление — с точностью \pm 50 бар. Полученный образцы изучались оптическими методами, их состав в отношении главных компонентов и серы определялся на микрозонде Сатеbах (Франция) с чувствительностью 0.005 мас.%. Состав флюида при заданных T, P, xH_2 , fO_2 рассчитывали по специальной программе.

В ходе работы было проведено две серии экспериментов. В первой серии растворимость серы была изучена в близэвтектических расплавах системы анортит-альбит-диопсид (валовый состав $An_{35}Ab_{10}Di_{55}$ в мол.%), которая рассматривается в качестве модельного аналога базальтовых магм. Исходное соотношение компонентов (мас.%): $SiO_2 = 52.0$, $Al_2O_3 = 16.8$, MgO = 9.1, CaO = 20.8 и $Na_2O = 1.3$. Эксперименты проводились при T = 1200°C, в интервале давления флюида H = 1200 состава 12000 состава

Во второй серии экспериментов растворимость серы была изучена в расплавах толеитового базальта состава (мас.%): $SiO_2=50.0$, $TiO_2=1.8$, $Al_2O_3=14.5$, FeO=14.0, MnO=0.2, MgO=5.8, CaO=10.4, $Na_2O=2.5$, $K_2O=0.7$ при $T=1200^{\circ}C$, P=2 кбар, fS_2 , контролируемой Pt-PtS буфером. Для предохранения платиновой ампулы от взаимодействия с силикатным расплавом использовался графитовый вкладыш. В связи с этим эксперименты проводились только в восстановительных условиях, при $xH_2=0.05$ -0.2, fO_2 , отвечающей C-CO-CO2 равновесию, с флюидом H-O-C-S состава.


ГОБРАЧЕВ И БЕЗМЕН: СЕРА ВО ФЛЮИДСОДЕРЖАЩИХ СИЛИКАТНЫХ РАСПЛАВАХ

Результаты экспериментов. Растворимость серы в системе гаплобазальтовый расплав-флюид во всем изученном интервале fO_2 (как в окислительных, так и в восстановительных условиях) возрастала с увеличением fO_2 от 0.018 вес.% при IW буфере до 0.57 вес.%, при MMO буфере. В соответствии с характером изменения состава флюида при изменении fO_2 растворимость серы увеличивалась с увеличением fSO_2 и fH_2O и уменьшалась с увеличением fH_2S (рис. 1 а, б).

Рис. 1. Влияние летучестей SO_2 (a) и H_2S (б) на растворимость серы в безжелезистом гаплобазальтовом расплаве состава $An_{35}Ab_{10}Di_{55}$, при $T=1200^{\circ}C$ и интервале давлений флюида H-O-S состава 2.1-3.2 кбар.

В экспериментах с Fe-содержащими базальтовыми расплавами в восстановительных условиях при xH_2 и fO_2 близких к xH_2 и fO_2 экспериментов с гаплобазальтовыми расплавами, растворимость серы уменьшалась с увеличением fO_2 от 0.176 до 0.085 вес.%. В отличии от гаплобазальтовых, безжелезистых расплавов с H-O-S флюидом, в которых и в восстановительных и в окислительных условиях наблюдалась положительная зависимость растворимости серы от fO_2 , в железосодержащем базальтовом расплаве с H-O-S флюидом наблюдалась отрицательная зависимость растворимости от fO_2 (Рис. 2). Подобное влияние fO_2 на растворимость серы в «сухих» базальтовых расплавах с S-O флюидом характерно для восстановительных условий.

Рис. 2. Растворимость серы в базальтовых расплавах в зависимости от fO_2 (квадраты - флюидсодержащий гаплобазальтовый расплав; треугольники - базальтовый расплав). В скобках приведена мольная доля водорода во флюиде.

Обсуждение результатов. Таким образом, проведенные исследования выявили аномальное поведение серы при растворимости в безжелезистых расплавах в зависимости от fO_2 под давлением флюида H-O-S состава — а именно отсутствие инверсии растворимости при переходе от восстановительных к окислительным условиям. Как в окислительных, так и в восстановительных условиях, растворимость серы в таких расплавах возрастала с увеличением fO_2 . В железосодержащих базальтовых расплавах эта зависимость носит экстремальный характер с минимумом растворимости в области кварц-фаялит-магнетитового QFM буфера.

Аномальный характер зависимости растворимости серы во флюидсодержащих безжелезистых расплавах может быть связан с двумя особенностями изученной гаплобазальтовой системы - составом расплава (наличием железа) и сосуществующего флюида.

Литература

Barin, I. *Thermochemical data of pure substances*. (1995). Third edition. New York: VCH Publ., p.750.

Carroll, M. R. and Webster J. D. (1994). Solubilities of sulfur, noble gases, nitrogen, chlorine and fluorine in magmas. *In Volatiles in Magmas*; pp. 231-279. Rev. mineral. 30, Mineralogical Society of America.

Haughton, D. R., Roeder P. L., Skinner B. J. (1974). Solubility of sulfur in mafic magmas. *Economic Geology*. Vol. 69. N.4, pp. 451-467.