Синтез Na-содержащих мэйджоритовых гранатов в системе $Mg_3Al_2Si_3O_{12}$ – $Na_2MgSi_5O_{12}$ при 11-20 ГПа: твердые растворы и структурные особенности

А. М. Дымшиц¹, А. В. Бобров¹, Л. Бинди², К. Д. Литасов³, А. Ф. Шацкий³, Э. Отани³, Ю. А. Литвин⁴

¹ Московский Государственный Университет им. М. В. Ломоносова, Москва A.Dymshits@gmail.com

² Музей естественной истории, Италия

³ Ун-т Тохоку, Япония

⁴ Институт экспериментальной минералогии РАН, Черноголовка

Ключевые слова: эксперимент, мантия, фазовые переход, натрийсодержащий мэйджоритовый гранат

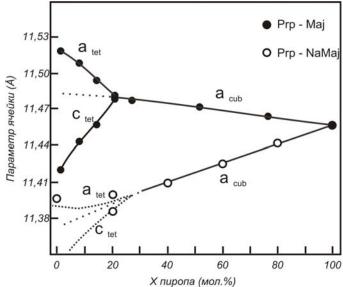
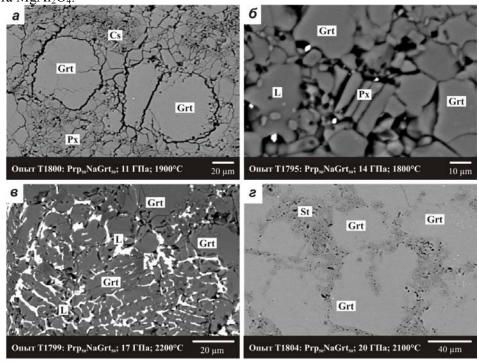
Ссылка: Дымшиц, А. М., А. В. Бобров, Л. Бинди, К. Д. Литасов, А. Ф. Шацкий, Э. Отани, Ю. А. Литвин (2011), Синтез Na-содержащих мэйджоритовых гранатов в системе $Mg_3Al_2Si_3O_{12}$ —Na₂ $MgSi_5O_{12}$ при 11-20 ГПа: твердые растворы и структурные особенности, *Вестник OH3 PAH, 3*, NZ6027, doi:10.2205/2011NZ000157.

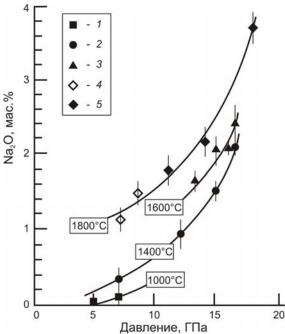
На сегодняшний день в качестве включений в алмазах описаны разнообразные минералы высоких давлений [например, Stachel, 2001]. Доказательство их истинно глубинного происхождения часто оказывается достаточно проблематичным из-за декомпрессионных структурных перестроек. Имеющиеся на сегодняшний день экспериментальные исследования, а также комплексный анализ P-T режима мантии Земли позволяет установить целую серию фазовых переходов и химических реакций в условиях астеносферы (>200 км) и переходной зоны (410–660 км). К числу таких наиболее глубинных минералов относятся MgSiO₃ со структурами ильменита и перовскита, CaSiO₃ со структурой перовскита, магнезиовюстит (ферропериклаз) и мэйджоритовый гранат. Характерной особенностью этих гранатов является избыточное (относительно 3 ф.е.) содержание кремния и устойчивая примесь Na, что позволяет относить их к Na-содержащим мэйджоритовым гранатам.

Настоящие экспериментальные исследования были направлены на получение всевозможных данных о гранатовой фазе $Na_2MgSi_5O_{12}$ (NaMaj): установление границ фазового перехода пироксен-гранат в P-T координатах, определение структурных особенностей в чистом виде и в твердых растворах с пиропом (Prp), а также изучение растворимости в модельных системах Prp-NaMaj. Эксперименты проведены в Университете Тохоку (Сендай, Япония) при $P=11-20~\Gamma\Pi a$ и $T=1500-2100^{\circ}C$ на прессовом аппарате типа Каваи, в котором ячейка с образцом сжимается восьмью кубическими пуансонами с треугольными рабочими площадками. Монокристаллическая съемка образцов проводилась на дифрактометре типа Вгикег-Епгаf MACH3 с графитовым монохроматическим излучением $MoK\alpha$. Мелкие кристаллы дополнительно изучались с использованием аппарата Oxford Xcalibur 3 с сапфировым 2 CCD детектором.

В ходе экспериментов при 13-19 ГПа были получены кристаллы Na-пироксена и Na-мэйджорита и выделены поля их стабильности [Дымшиц и др., 2010]. Фазовая граница описывается уравнением P = 0.0050(2)T + 7.5(4). Детальное изучение кристаллов Na-мэйджорита с помощью монокристальной ренгеновской дифракции позволило установить тетрагональную сингонию этой фазы с пространственной группой $I4_1/acd$ и параметрами ячейки: a = 11.3966(6), c = 11.3369(5)Å и V = 1472.5(1) Å 3 [Bindi et al., 2011].

Структуры гранатов промежуточного состава между Na-мэджоритом и пиропом $(NaMaj_{20}, NaMaj_{40}, NaMaj_{50}, NaMaj_{60}$ и $NaMaj_{80})$ также были изучены с использованием монокристаллической рентгеновской съемки. Результаты показали, что увеличение в стартовом составе NaMaj приводит к постепенному уменьшению параметра ячейки и затем к смене сингонии с кубической на тетрагональную при содержании NaMaj более чем 80%. Интересно отметить, что аналогичный переход наблюдается для системы пироп-мэйджорит, что наглядно представлено на рис. 1 [$Parise\ et\ al.$, 1996].


Рис. 1. Изменение параметров ячейки в структуре гранатов с переменным составом.

Отдельная серия экспериментов при 11-20 ГПа для стартовых составов с содержанием 50 мол.% NаМај была проведена с целью подтверждения тенденции повышения содержания натрия в гранате с давлением. Условия опытов выбирались с расчетом на кристаллизацию гранатов из расплава вблизи солидуса, что позволяет получить наибольшие содержания Na в гранате. При давлениях 11-15 ГПа в продуктах опытов совместно с гранатом и стишовитом наблюдался пироксен жадеит-энстатитового состава. При давлениях выше 16 ГПа пироксен не был установлен в продуктах опытов, а количество стишовита также было крайне низким (не более 5-7 об.%). Гранаты с наиболее высокими концентрациями Na_2O (>5 мас.%) формируются вблизи солидуса и образуют субидиоморфные кристаллы, пространство между которыми заполнено небольшим (<5 об.%) количеством закалочного расплава (рис. 2). Понижение температуры приводило к появлению в продуктах опытов, совместно с гранатом небольших (5-10 мкм) выделений богатой натрием фазы, отвечающей по составу твердому раствору $Na(Mg_xSi_xAl_{1-2x})SiO_4$ (0<x<0.5), в котором содержание MgO не превышает 3.8 мас.%. Эта фаза, по-видимому, соответствует $NaAlSiO_4$ (со структурой кальциоферрита) с различной примесью компонента $MgAl_2O_4$.

Рис. 2. Продукты опытов в системе Prp₅₀— Nа-мэйджорит₅₀ в отраженных электронах.

В результате проведенной серии экспериментов в широком диапазоне температур и давлений были получены Na-содержащие мэйджоритовые гранаты, причем в их составе наблюдалось закономерное увеличение содержания натрия, кремния и, как следствие, концентрации натриевого мэйджорита с давлением (рис. 3).

Рис. 3. Содержания Na_2O в гранатах, синтезированных при различных температурах и давлениях в экспериментах с участием эклогита [*Okamoto, Maruyama*, 1998] (1), MORB [*Ono, Yasuda*, 1996] (2, 3), а также модельной системе пироп– $Na_2MgSi_5O_{12}$ (наши данные) при 7,0 и 8,5 ГПа [*Bobrov et al.*, 2008b] (4) и 11–20 ГПа (5). Вертикальные отрезки отражают величины стандартных отклонений анализов.

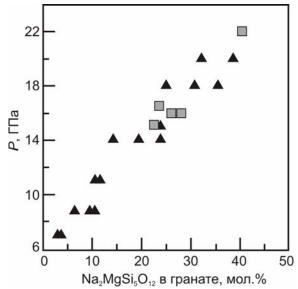

Отмеченная тенденция ликвидусной кристаллизации граната осложняется присутствием в ряде опытов пироксена (еще одной натрийсодержащей фазы), что приводит к изменению коэффициентов распределения натрия между гранатом и расплавом. Тем не менее, из результатов опытов следует, что для изученного стартового состава была установлена растворимость Na-мэйджорита в гранате вплоть до 40 мол.%, что согласуется с данными по системе форстерит-жадеит (табл. 1; рис. 4) [Gasparik, Litvin, 1997].

Таблица 1. Особенности состава гранатов в системе пироп $Mg_3Al_2Si_3O_{12}$ — $Na_2MgSi_5O_{12}$

№ опыта	T1800	T1795	ES-243	T1796	T1804
Р, ГПа	11	14	15	18	20
SiO ₂	49.33	49.81	54.86	54.72	56.66
Al_2O_3	19.31	20.93	15.67	17.03	14.57
MgO	28.57	27.93	27.07	24.83	23.52
Na ₂ O	1.8	2.19	3.72	4.60	5.71
Сумма	99.01	100.86	101.33	100.00	100.46
Формульные единицы на 12 атомов О					
Si	3.343	3.315	3.630	3.628	3.785
Al	1.542	1.641	1.222	1.330	1.147
Mg	2.884	2.768	2.668	2.452	2.340
Na	0.236	0.282	0.477	0.591	0.739
Сумма	8.005	8.006	7.997	8.002	8.011

Существенная растворимость Na-мэйджорита в пиропе, а также находки природных гранатов со значительными концентрациями Na (>1 мас.% Na₂O) позволяют рассматривать Na-содержащий мэйджоритовый гранат в качестве фазы-концентратора Na в условиях низов верхней мантии и переходной зоны. Успешный синтез конечного члена и расшифровка его

структуры имеет ключевое значение в изучении термодинамических констант, которые в совокупности с компьютерным моделированием позволят создать усовершенствованный термобарометр для минеральных ассоциаций с участием мэйджоритовых гранатов.

Рис. 4. Зависимость растворимости $Na_2MgSi_5O_{12}$ в гранате с давлением для системы Prp_{50} — $Na-мэйджорит_{50}$ (треугольники) в сопоставлении с данными [Gasparik, Litvin, 1997] (квадраты).

Работа выполнена при поддержке Российского Фонда Фундаментальных Исследований (гранты 09-05-00027 и 11-05-00401), а также грантов Президента Российской Федерации по государственной поддержке молодых российских ученых-докторов наук (МД-534.2011.5) и ведуших научных школ (НШ-3634.2010.5).

Литература

Бобров А. В., А. М. Дымшиц, Ю. А. Литвин. (2009) Условия магматической кристаллизации Na-содержащих мэйджоритовых гранатов в мантии Земли по экспериментальным и природным данным // *Геохимия*. № 10. С. 1011–1026.

Дымшиц А. М., А. В. Бобров, К. Д. Литасов, А. Ф. Шацкий, Э. Отани, Ю. А. Литвин (2010) Эксперименталоьное изучение фазового перехода пироксен-гранат в системе $Na_2MgSi_5O_{12}$ при давлениях 13−20 ГПа: первый синтез натриевого мэйджорита // ДАН. Том 434, № 3, с. 378–381

Akaogi M., A. Akimoto. (1977) Pyroxene-garnet solid-solution equilibria in the systems $Mg_4Si_4O_{12}-Mg_3Al_2Si_3O_{12}$ and $Fe_4Si_4O_{12}-Fe_3Al_2Si_3O_{12}$ at high pressures and temperatures // Phys. Earth. Planet. Inter. V. 15. P. 90–106.

Bindi L., A. M. Dymshits, A. V. Bobrov, K. D. Litasov, A. F. Shatskiy, E. Ohtani, Yu. A. Litvin (2011) Crystal chemistry of sodium in the Earth's interior: The structure of Na₂MgSi₅O₁₂ synthesized at 17.5 GPa and 1700°C // American Mineralogist, V. 96, p. 447–450

Gasparik T., Yu. A Litvin.. (1997) Stability of Na₂Mg₂Si₂O₇ and melting relations in the forsterite-jadeite join at pressures up to 22 GPa // Eur. J. Mineral. V. 9. P. 311–326.

Parise J. B., Y. Wang, G. D. Gwanmesia, J. Zhang, Y. Sinelnikov, J. Chmielowski, D. J. Weidner, R. C. Liebermann (1996). The symmetry of garnets on the pyrope (Mg₃Al₂Si₃O₁₂) – majorite (Mg₄Si₄O₁₂) join // *Geophys. Research Letters. V.* 23. № 25. P. 3799-3802

Stachel T. (2001) Diamonds from the asthenosphere and the transition zone. // Eur J Mineral. V. 13. P. 883–892

Stachel T., J. Harris, G. Brey, W. Joswig. (2000) Kankan diamonds (Guinea) I: from the lithosphere down to the transition zone. // Contib Mineral Petrol. V. 140. P. 1–15

Okamoto K., S. Maruyama (1998) Multi-anvil re-equilibration experiments of a Dabie Shan ultrahigh-pressure eclogite within the diamond-stability fields // *The Island Arc. V.* 7. p. 52-69

Ono S., A. Yasuda (1996) Compositional change of majoritic garnet in a MORB composition from 7 to 17 GPa and 1400 to 1600 degrees C // Phys. Earth. Planet. Inter. V. 96. P. 171–179.