Изучение форм растворения летучих соединений водорода, углерода, азота и кислорода в магматических расплавах ранней мантии Земли методами ИК и КР спектроскопии

А. А. Кадик, В. В. Колташев, Е. Б. Крюкова, В. Г. Плотниченко ¹ Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва <u>kadik@geokhi.ru;</u> тел.: +7 (499) 137 7200 факс.: +7 (495) 938 2054 ² Научный центр волоконной оптики РАН, Москва

Ключевые слова: летучесть O, H и N; железо; магматический океан; ранняя мантия Земли, ИК и КР спектроскопия.

Ссылка: Кадик, А. А., В. В. Колташев, Е. Б. Крюкова, В. Г. Плотниченко (2011), Изучение форм растворения летучих соединений водорода, углерода, азота и кислорода в магматических расплавах ранней мантии земли методами ИК и КР спектроскопии, *Вестник ОНЗ РАН, 3*, NZ6031, doi:10.2205/2011NZ000161.

Продолжены экспериментальные исследования особенностей растворения летучих соединений H, C, N, O в продуктах плавления ранней мантии Земли. В качестве модельной системы выбран алюмосиликатный расплав (NaAlSi₃O₈ 80 вес. %) + *металлическая фаза Fe* (FeO 20 вес. %) + *H*+*C*+*N* с добавлением азота (Si₃N₄ 1, 3, 5, 7 вес. %), который при закалке продуктов эксперимента дает H–C–N–O-содержащие силикатные стекла. Закалка проводилась при высоком давлении 4 ГПа и температуре 1550°С и низких значениях химического потенциала кислорода (летучести fO_2) ниже буферного равновесия железо-вюстит lgfO₂(IW). Методами исследований являлись ИК (инфракрасная) микроспектроскопия и микро КР (комбинационное рассеяние света). Спектры ИК поглощения (Рис. 1) регистрировались на вакуумном Фурье-спектрометре "Bruker IFS-113v" с оптическим микроскопом "IR Microscope A590", фокусирующим проходящее через исследуемые образцы излучение в пятно диаметром от 15 до 400 мкм.

Рис. 1. ИК спектры H-C-N-О-содержащих алюмосиликатных стекол толщиной 120-180 µm.

Измерение спектров КР (Рис. 2) проводилось на тройном спектрографе T-64000 (Jobin Yvon), в котором возбуждающее излучение от Ar⁺-лазера фокусировалось на поверхности

КАДИК И ДР.: МАГМАТИЧЕСКИЕ РАСПЛАВЫ РАННЕЙ МАНТИИ ЗЕМЛИ

образца в пятно диаметром 2 мкм. Их применение позволило установить влияние летучести кислорода (fO_2) на соотношение "окисленных" (H_2O , OH^- , CO_2 , C=O, CO_3^{2-}) и "восстановленных" (H_2 , CH_4 , SiC, C–C) соединений H и C в расплавах, а также O_2 , N_2 , N–O, C–N и других N–H комплексов (NH_3 , NH_4^+ , NH_2^- (\equiv Si– NH_2), NH_2^+ (\equiv Si– $O-NH_2$)) в весьма широкой области окислительно-восстановительных условий (Puc.1, Табл. 1).

Природа химической растворимости азота в силикатных жидкостях во многом остается малоизученной. Это относится и к случаю, когда взаимодействие азота с компонентами силикатных расплавов происходит в присутствии водорода и углерода - двух главных газообразующих элементов Земли. Между тем, изучение металлургических систем свидетельствует о значительном влиянии H и C на растворимость азота в шлаках [Mulfinger, 1966; Martinez and Sano, 1990], которое связано с формированием в силикатных жидкостях основного состава комплексов азота CN^- и N-H.

Образец №	854	855 856		857
C-C (D-bond)	1340	1340 1340		1402
(Na, Mg, Ca)CO ₃ ² ; NH ₄ ⁺ (v ₄)*	1421;1440	1421;1440 1421;1440 1421;1440		1421;1440
C-C (G-bond)	следы	следы следы следы		1560
H_2O , N-H (N H_2^+ , N $H_2^-(v_2)^*$)	1629	1619 1610		1612
С=0	1775	1780	1780 1790	
Al-O(Si), N-O ?	1940	1940	1940 1940	
Si-O-Si ^{stretching}	2160	2160 2160		2160
CO ₂ (dissolved)	2361; 2341; 2332	2361; 2341; 2361; 2341; 2332 2332		2361;2341; 2332
$NH_3, NH_4^+(2v_4)^*$	2830	2830 2830		2830
CH ₄	-	3009; 2917 3009; 2917		3009; 2917
NH ₃ , NH ₄ ⁺ (v_2+v_4)*	3048	3048 3048		-
?	3185	3185 3185		3185
C-N	3213	3213 3213		3213
$NH_2^-, NH_3, NH_4^+ (2v_2)^*$	3282	3282 3282 3282		3282
$NH_2^-, NH_3, NH_4^+(v_3)^*$	3370	3368	3368	3390
OH ⁺ + H ₂ O ^{fundamental stretch} :				
OH ^{stretch} in Si-OH complex (2.8µm)	3603	3603	3603	3603

Таблица 1. Частоты пиков полос ИК поглощения, см⁻¹.

OH ^{stretch} in H ₂ O complex	3495	3495	3495	3495
Si-OH	3374	3374	3374	3374
OH-phonon ^{comb} (2.53µm)	3979	3979	3979	3979
Si-OH ^{comb(stretch+bend)} (2.22µm)	4543	4543	4543	4543
H ₂ O ^{comb(stretch+bend)} (1.91µm)	4972	4972	4972	4972

КАДИК И ДР.: МАГМАТИЧЕСКИЕ РАСПЛАВЫ РАННЕЙ МАНТИИ ЗЕМЛИ

ИК спектроскопия силикатных соединений, которые имеют в своей структуре N-H связи [Busigny et al., 2004], обнаруживает полосы поглощения в области 1400-3400 см⁻¹. Они принадлежат нормальным модам колебаний свободного аммонийного иона NH₄⁺ симметрии T_d , где v_2 - симметричные изгибные колебания, v_3 – антисимметричные валентные колебания, v_4 – антисимметричные изгибные колебания [France et al., 1984; Harlov et al., 2001; Watenphul et al., 2009]. В наших экспериментах им соответствуют пики на 3370 (v_3), 3282 ($2v_2$), 3048 (v_2+v_4), 2830 ($2v_4$), 1620 (v_2) и 1440 (v_4) см⁻¹. Предполагается, что в N-H содержащих стеклах – продуктах наших экспериментов полосы ИК поглощения связаны с колебательными движениями как иона NH₄⁺, так и других N–H комплексов (NH₃, NH₄⁺, NH₂⁻(\equiv Si–NH₂)). Понижение fO_2 в области значений Δ lg fO_2 (IW) от -2 до -4 характеризуется увеличением содержания соединений азота со связью N-H (NH₂⁻, NH₂⁺) и уменьшением содержания окисленных форм водорода OH⁻ и H₂O.

Рис. 2. КР спектр образца 856, $\Delta lg fO_2(IW) = -3.2$.

В КР спектрах образцов в области 20-4000 см⁻¹ наблюдается ряд пиков, которые характеризуют колебания связей N-H, N-N, N-Si, C-H, H-H и O-H. Положение и форма

КАДИК И ДР.: МАГМАТИЧЕСКИЕ РАСПЛАВЫ РАННЕЙ МАНТИИ ЗЕМЛИ

широкой полосы на 3200-3700 см⁻¹ соответствует колебаниям О-Н связей в молекулах H₂O или гидроксильных группах OH⁻ в структуре силикатных расплавов [*Mercier et al.*, 2010]. Зависимость от fO_2 интенсивности этой полосы в спектрах КР и коэффициента поглощения в спектрах ИК однозначно свидетельствует об уменьшении концентрации H₂O+OH⁻ с понижением летучести кислорода fO_2 (Табл. 2). Слабый пик на ~1620 см⁻¹ отвечает деформационному колебанию молекул H₂O, растворенных в стекле. Полоса КР на 4136 см⁻¹ принадлежит молекулярному водороду H₂, растворенному в стекле (Рис. 2). Полосы 3185 и 3291 см⁻¹ характеризуют центры NH₂⁺ (\equiv Si–O–NH₂), интенсивность которых практически не зависит от fO_2 , а полосы 3317 и 3393 см⁻¹ – центры NH₂⁻ (\equiv Si–NH₂), интенсивность которых растет с уменьшением $\Delta lg fO_2$ (IW). Острый и узкий пик КР на 2331 см⁻¹ принадлежит главному колебанию молекулы азота N₂ в стекле [*Roskosz et al.*, 2006]. Предполагается, что небольшой пик, наблюдаемый в КР на 2914 см⁻¹ и в спектрах ИК на 2917 см⁻¹, принадлежит молекуле CH₄, растворенной в матрице стекла.

№ образца	OH		H ₂ O	
	α , cm ⁻¹	v , cm ⁻¹	α , cm ⁻¹	v , cm ⁻¹
854 (1% Si ₃ N ₄)	258.4	3495	63.8	1629
855 (3% Si ₃ N ₄)	171.5	3495	53.9	1619
856 (5% Si ₃ N ₄)	135.7	3495	61.4	1611
857 (7% Si ₃ N ₄)	32.8	3495	62.3	1612

Таблица 2. Коэффициент поглощения α образцов алюмосиликатов в полосах OH⁻ и H₂O, см⁻¹.

Таким образом, результаты исследований привели к заключению о формировании ранних магматических расплавов Земли с высокой концентрацией CH₄, H₂, NH₃, N₂, а также о влиянии ранней вулканической активности на образование первичной восстановленной атмосферы Земли и создание условий для образования биосферы.

Работа выполнена при поддержке РФФИ грант № 08-05-640377, Программ Президиума П-24, ОНЗ РАН №7 и №8.

Литература.

Busigny, V., Cartigny, P., Philippot, P. & Javoy, M. Quantitative analysis of ammonium in biotite using infrared spectroscopy, (2004) *American Mineralogist, 89*, 1625-1630.

France, P. W., Carter, S. F., Williams, J. R. NH⁺₄ absorption in fluoride glass infrared fibers. (1984), *Journal of the American Ceramic Society, Vol.* 67 №11, C243-C244.

Harlov, D. E., Andrut, M., Melzer, S. Characterisation of NH₄-phlogopite (NH₄) (Mg₃) [AlSi₃O₁₀] (OH)₂ and ND₄-phlogopite (ND₄) (Mg₃) [AlSi₃O₁₀] (OD)₂ using IR spectroscopy and Rietveld refinement of XRD spectra. (2001) *Physics and Chemistry of Minerals, Vol. 28*, No₂, 77-78.

Mulfinger H. O. Physical and chemical solubility of nitrogen in glass melts, (1966) *Journal of the American Ceramic Society*, 49, 462-467.

Martinez E. R. & Sano N. Nitrogen solubility in CaO-SiO₂, CaO-MgO-SiO₂, and BaO-MgO-SiO₂ melts, (1990) *Metallurgical and Materials Transactions B*, 21B, 97-104.

Mercier M. et al. Spectroscopic analysis (FTIR, Raman) of water in mafic and intermediate glasses and glass inclusions. (2010) *Geochimica et Cosmochimica Acta, Vol.* 74, 5641-5656.

Roskosz M., Mysen B. O. & Cody G. D. Dual speciation of nitrogen in silicate melts at high pressure and temperature. An experimental study. (2006) *Geochimica et Cosmochimica Acta, Vol. 70*, 2902-2918.

Watenphul, A., Wunder, B. & Heinrich, W. High-pressure ammonium-bearing silicates: Implications for nitrogen and hydrogen storage in the Earth's mantle. (2009) *American Minerologist, Vol. 94*, 283-292.