BECTHИК ОНЗ РАН, ТОМ 3, NZ6078, doi:10.2205/2011NZ000208, 2011

Определение термодинамических свойств H₄SiO₄ в состоянии идеального газа из экспериментальных данных

A. В. Плясунов Институт экспериментальной минералогии РАН, Черноголовка plyasunov@iem.ac.ru

Ключевые слова: H_4SiO_4 , термодинамические свойства, идеальный газ.

Ссылка: Плясунов А.В. (2011), Определение термодинамических свойств H_4SiO_4 в состоянии идеального газа из экспериментальных данных, *Вестиик ОНЗ РАН*, 3, NZ6078, doi:10.2205/2011NZ000208.

Термодинамические свойства газообразных гидроксидов кремния необходимы при анализе конденсации силикатов при формировании Солнечной системы [Hashimoto, 1992], отложения кремнезема в паро-насыщенных гидротермальных системах, коррозии кремниевых сплавов и керамик во влажных высокотемпературных средах.

Экспериментальные исследования парциального давления соединений кремнезема при реакции водяных паров с кристобалитом [*Hashimoto*, 1992; *Jacobson*, *et al.*, 2005] показывают, что при 1100-1650 К и давлении паров воды менее 0,1 МПа концентрация кремнезема в пара определяется реакцией

$$SiO_2(TB) + 2H_2O(\Gamma) = H_4SiO_4(\Gamma)$$
(1)

Масс-спектрометрические данные при 1473–1773 К и давлении воды в пределах 0.018 и 0.094 МПа [Opila, et al., 1997] также подтверждают, что $H_4SiO_4(\Gamma)$ является главным продуктом взаимодействия водяного пара и $SiO_2(\text{тв})$. Однако опубликованные значения термодинамических свойств газообразного H_4SiO_4 [Allendorf, et al., 1995; Jacobson, et al., 2005; Rutz and Bockhorn, 2005] отличаются до 18 кДж-моль в величине энтальпии образования и до 9 Дж-К-1-моль в величине энтропии при стандартной температуре T_r =298,15 К и стандартном давлении P^{\otimes} = 0,1 МПа. Поэтому было решено термодинамически обработать все имеющиеся данные для реакции (1) с целью определения величин $\Delta_t G^{\circ}$ и S° для $H_4SiO_4(\Gamma)$ при 298,15 К и 0,1 МПа.

Подборка экспериментальных данных

Для расчета констант равновесия для реакции (1) были выбраны данные по растворимости фаз кремнезема в парах воды плотностью менее 15 кг·м⁻³, см. таблицу.

Таблица. Данные, использованные для определения $\Delta_t G^o$ и S^o H₄SiO₄(Γ) при 298.15 К и 0.1 МПа

Литературная ссылка	Твердая	Интервал	Интервал	Количество	$ \overline{\Delta} $ 6
	фаза ^а	температур, К	давлений,	точек	1 1
			МПа		Дж∙моль⁻¹
[Straub and Grabowski, 1945]	AS	533.2-616.5	0.345-2.76	32	579
[Morey and Hesselgesser, 1951]	Q	673.2–773.2	3.45-6.89	3	4322
[Wendlandt and Glemser, 1963] ^B	Q	673.2	2.128	1	3497
$[Heitmann, 1964]^{\Gamma}$	AS	572.2-776.2	0.88-4.90	21	871
$[Heitmann, 1964]^{\Gamma}$	Q	624.2-865.2	0.88-4.90	6	907
[Мартынова и др., 1975]	AS	424.25-496.06	0.49 - 2.45	3	417
$[Hashimoto, 1992]^{\pi}$	CR	1375–1661	≤0.1	10	182
[Jacobson et al., 2005]	CR	1074–1375	≤0.1	26	946

^а AS, Q, CR обозначают аморфный кремнезем, кварц, кристобалит, соответственно

 $^{^{6}}$ $|\overline{\Delta}|$ есть среднее абсолютное значение отклонения между экспериментальной и рассчитанной величиной $G^{o}_{_{T}P^{\otimes}}$ (H₄SiO₄(Γ)) .

^в Численные величины растворимости взяты из обзора [Harvey and Bellows, 1997].

ПЛЯСУНОВ: ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА H₄SiO₄

Данные работы [*Heitsmann*, 1964] при низких Т и Р критиковались в работах [*Мартынова и др.*, 1975] и [*Harvey and Bellows*, 1997], поэтому только данные по растворимости при T>550 K and P>0.6 МПа из [Heitmann, 1964] были включены в обработку. При 773 K величины растворимости кварца в работе [*Wendlandt and Glemser*, 1963] примерно в 3-4 раза ниже, чем результаты [*Morey and Hesselgesser*, 1951] and [*Heitmann*, 1964], поэтому данные [*Wendlandt and Glemser*, 1963] при этой температуре были исключены из рассмотрения.

Термодинамическая обработка данных

Выражение для $\ln K^o$ реакции (1) с хорошим приближением записывается следующим образом

$$\ln K^{\circ} = \ln \frac{Y \cdot \phi_{H_4 SiO_4}^{\infty} \cdot P^{\otimes}}{P \cdot (\phi_{H_2 O}^*)^2} - \frac{V(SiO_2(s)) \cdot (P - P^{\otimes})}{RT}$$
(2)

где Y обозначает мольную долю кремнезема в паровой фазе, $\phi_{H_2O}^*$ - коэффициент фугитивности чистой воды, $\phi_{H_4SiO_4}^\infty$ - коэффициент фугитивности H_4SiO_4 при бесконечном разбавлении в воде, V – мольный объем твердой фазы. Величины коэффициентов фугитивности воды, $\phi_{H_2O}^*$, известны с высокой точностью в широком диапазоне T и P из уравнения состояния воды [Wagner and Pru β , 2002], однако, величины $\phi_{H_4SiO_4}^\infty$ неизвестны.

2 модели для коэффициентов фугитивности были использованы при обработке данных:

- 1). Идеальная смесь идеальных газов, т.е.. $\phi_{H,O}^*$ =1 и ϕ_{H,SiO_4}^∞ =1.
- 2). Приближение, следующее из предварительных результатов для H_3BO_3 и H_4SiO_4 , что $B_{12}(T)\approx n\cdot B_{11}(T)$, где величина n близка (± 1) к числу ОН групп в молекуле гидроксида, т.е. $B_{12}(T)=4\cdot B_{11}(T)$ для взаимодействия между молекулами H_2O и H_4SiO_4 . Здесь B_{11} это второй вириальный коэффициент воды, численные значения которого хорошо известны [Harvey and Lemmon, 2004], а B_{12} второй смешанный вириальный коэффициент для взаимодействия H_2O и H_4SiO_4 в газовой фазе. Из курсов термодинамики известно соотношение величин вторых вириальных коэффициентов и коэффициентов фугитивности паровой смеси [Prausnitz, $et\ al.$, 1999]: $\ln \varphi_{H_2O}^* = \frac{B_{11}(T)\cdot P}{RT}$ и $\ln \varphi_{H_4SiO_4}^\infty = \left(2B_{12}(T)-B_{11}(T)\right)\frac{P}{RT}$. Данная

модель считается более реалистичной по сравнению с моделью идеального смешения идеальных газов.

Рассчитанные величины $\ln K^o$ были пересчитаны в величины $\Delta_r G^o(T)$ для реакции (1) при стандартном давлении идеального газа 0,1 МПа согласно соотношению:

$$\Delta_r G^o(T) = -RT \ln K^o = G_T^o(H_4 SiO_4(g)) - 2G_T^o(H_2 O(g)) - G_T^o(SiO_2(s)). \tag{3}$$

Изменение энергии Гиббса, $\Delta_r G^o(T)$, является стехиометрической суммой энергий Гиббса, G_T^o , участников реакции (1), которые вычисляются следующим образом:

$$G_T^o = \Delta_f G_{T_r}^o - S_{T_r}^o (T - T_r) + \int_{T_r}^T C_p^o dT - T \int_{T_r}^T \frac{C_p^o}{T} dT.$$
 (4)

Далее для каждой экспериментальной точки были вычислены значения вспомогательной функции F:

$$F = \Delta_r G^o + 2G_T^o(H_2O(g)) + G_T^o(SiO_2(s)) - \int_{T_R}^T C_p^o(H_4SiO_4(g))dT + T \int_{T_r}^T \frac{C_p^o(H_4SiO_4(g))}{T}dT.$$
 (5)

При такой записи F является уравнением прямой линии, для которой наклон и пересечение с осью ординат равны величинам S^o и $\Delta_r G^o$, соответственно, для $H_4SiO_4(\Gamma)$ при 298,15 К:

$$F = \Delta_f G_T^o (H_4 SiO_4(g)) - S_T^o (H_4 SiO_4(g)) \cdot (T - T_r).$$
(6)

г Статистический вес точек принят равным 0.5.

^д Величины K не приведены в статье, однако большая часть экспериментальных данных табулирована в [Jacobson, et al., 2005].

ПЛЯСУНОВ: ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА H₄SiO₄

Всего определено 102 значения F в интервале температур 424-1661 К. Линейной регрессией определены следующие значения термодинамических свойств $H_4SiO_4(\Gamma)$ при 298,15 К:

- 1). Для модели «идеальная смесь идеальных газов»: $\Delta_f G^o = -1239.74 \pm 0.53$ кДж·моль⁻¹; $S^o = 346.65 \pm 0.75$ Дж·К⁻¹·моль⁻¹, погрешности даны как 2σ .
- 2). Для приближения $B_{12}(T)=4\cdot B_{11}(T)$: $\Delta_f G^o=-1238.51\pm0.51$ кДж·моль⁻¹; $S^o=347.78\pm0.72$ Дж·К⁻¹·моль⁻¹. Эти величины полагаются более точными.

Принимая во внимание погрешности термодинамических функций твердых фаз и, что более существенно, неопределенности величин теплоемкости газообразной ортокремневой кислоты (C_p^o данные из [Allendorf, et al., 1995] и [Rutz and Bockhorn, 2005] различаются в пределах 2–8%), следующие величины рекомендованы для $H_4SiO_4(\Gamma)$ при 298,15 K:

 $\Delta_f G^o$ =-1238.51±3.0 кДж·моль⁻¹; S^o =347.78±6.2 Дж·К⁻¹·моль⁻¹; $\Delta_f H^o$ =-1340.68±3.5 кДж·моль⁻¹. Величины S^o для $H_2(\Gamma)$, $O_2(\Gamma)$, Si(TB) были взяты из [Cox, et al., 1989]. Данные по теплоемкости $H_4SiO_4(\Gamma)$ при 250–2000 К из [Allendorf, et al., 1995] аппроксимированы следующим полиномом: C_p^o/R = a_o + a_1 ·10⁻²·T+ a_2 ·10⁻⁵·T²+ a_3 ·10⁻⁸·T³+ a_4 ·10⁻¹¹·T⁴+ a_5 ·10⁻¹⁵·T⁵, где a_o =2.87914; a_1 =5.89126; a_2 =-9.47715; a_3 =7.84564; a_4 =-3.15382; a_5 =4.89073.

Для графического представления данные были пересчитаны в величины измерения энергии Гиббса, $\Delta_{sol}G^o$, для реакции $SiO_2(кварц) + 2H_2O(r) = H_4SiO_4(r)$. Рассчитанные величины $\Delta_{sol}G^o$ показаны на рисунке различными символами. Сплошная линия соответствует термодинамическим функциям $H_4SiO_4(r)$ по результатам данной работы, а штриховая линия – по результатам [*Jacobson, et al.*, 2005].

Рис. Величины $\Delta_{sol}G^o$ при $P^{\otimes}=0.1$ МПа для реакции $SiO_2(\kappa варц)+2H_2O(\Gamma)=H_4SiO_4(\Gamma)$, рассчитанные из экспериментальных данных (символы), или с использованием термодинамических функций $H_4SiO_4(\Gamma)$, рекомендованных в данной работе (сплошная линия) или в [*Jacobson*, *et al.*, 2005] (штриховая линия)

Литература

ПЛЯСУНОВ: ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА H₄SiO₄

- Allendorf M. D., C. F. Melius, P. Ho, M. R. Zachariah (1995), Theoretical study of the thermochemistry of molecules in the Si–O–H system, *J. Phys. Chem.*, 99, 15285–15293.
- Cox J. D., D. Wagman, V. A. Medvedev (1989), *CODATA Key Values for Thermodynamics*, Hemisphere Publishing Corporation, New York.
- Harvey A. H., J. C. Bellows (1997), Evaluation and correlation of steam solubility data for salts and minerals of interest in the power industry, NIST Technical Note 1387, 88 pp.
- Harvey A. H., E. W. Lemmon (2004), Correlation for the second virial coefficient of water, *J. Phys. Chem. Ref. Data*, 33, 369–376.
- Hashimoto A. (1992), The effect of H₂O gas on volatilities of planet-forming major elements: I. Experimental determination of thermodynamic properties of Ca-, Al-, and Si-hydroxide gas molecules and its application to the solar nebula, *Geochim. Cosmochim. Acta*, 56, 511–532.
- Heitmann H. G. (1964), Solubility of silicic acid in water and steam and its effect on silica deposits in turbines (in German), *Chemiker-Zeitung*, 88, 891–893.
- Jacobson N. S., E. J. Opila, D. L. Myers, E. H. Copland (2005), Thermodynamics of gas species in the Si-O-H system, *J. Chem. Thermodyn.*, *37*, 1130–1137.
- Мартынова О. И., А. С. Попов, В. Ф. Фурсенко (1975), О пограничных линиях диаграмм фазового равновесия системы SiO_2 - H_2O , *Теплоэнергетика*, No. 5, 66–68.
- Opila E. J., D. S. Fox, N. S. Jacobson (1997), Mass spectrometric identification of Si–O–H(g) species from the reaction of silica with water vapor at atmospheric pressure, *J. Am. Ceram. Soc.*, 80, 1009–1012.
- Prausnitz J. M., R. N. Lichtenthaler, E. G. de Avezedo (1999), *Molecular Thermodynamics of Fluid-Phase Equilibria*. 3rd Edition, Prentice-Hall, New York, 860 p.
- Rutz L. K., H. Bockhorn (2005), Theoretical studies on the mechanism of formation of silicon dioxide (SiO₂), *Fourth Joint Meeting of the U.S. Sections of the Combustion Institute*: Western States, Central States, Eastern States, Philadelphia, PA, United States, Mar. 20–23, 2005, F38/1–F38/6. Publisher: Combustion Institute, Pittsburgh, Pa.
 - Straub F. G., H. A. Grabowski (1945), Silica deposition in steam turbines, *Trans. ASME*, 67, 309–316.
- Wagner W., A. Pruß (2002), The IAPWS formulation for the thermodynamic properties of ordinary water substances for general and scientific use, *J. Phys. Chem. Ref. Data*, 31, 387–535.
- Wendlandt H. G., O. Glemser (1963), Reaction of oxides with water at high pressures and temperatures (in German). *Angew. Chem.*, 75, 949–957.