Моделирование теплового режима сибирского кратона инверсией сейсмических профилей «Рифт» И «Метеорит»

А. А. Прокофьев, О. Л. Кусков О.Л., В. А. Кронрод Институт геохимии и аналитической химии РАН им. В. И.Вернадского, Москва irishrover@yandex.ru тел: 8 (915) 183 9073

Ключевые слова: литосфера, неупругость, сейсмические скорости, кратон.

Ссылка: Прокофьев, А. А., О. Л. Кусков О.Л., В. А. Кронрод (2011), Моделирование теплового режима сибирского кратона инверсией сейсмических профилей «Рифт» И «Метеорит», *Вестник ОНЗ РАН, 3*, NZ6080, doi:10.2205/2011NZ000210.

Температура земных недр – один из самых неопределенных физических параметров. Поскольку скорости сейсмических волн более чувствительны к температуре, нежели к составу, то инверсия сейсмических скоростных разрезов в термические модели, представляет наиболее перспективный (хотя и косвенный) путь для оценки термального режима мантии Земли.

При построении сейсмических моделей, исследователи сталкиваются с проблемой качественной оценки полученных результатов, поскольку неизвестно, какие значения скоростей лучше и точнее отображают особенности строения Земли. Сейсмические данные, полученные при отработке сверхдлинных сейсмических профилей на территории Сибирского кратона, обрабатывались разными группами исследователей [Oreshin et al., 2002; Pavlenkova and Pavlenkova, 2006; Egorkin, 1999]. Полученные скоростные модели заметно отличаются друг от друга, как по строению, так и по абсолютным значениям сейсмических скоростей. Однако термодинамика показывает, что вариации продольной скорости 0.2 км/с эквивалентны изменению температуры на 500°С. Полученные обращением/инверсией сейсмических моделей температурные профили являются тем инструментом, который позволит оценить качество различных сейсмических моделей.

Целью работы является реконструкция состава и теплового режима литосферы архейской мантии Сибирского кратона. Исходными данными для восстановления температуры и состава мантии являются ксенолиты деплетированного вещества гранатовых перидотитов из кимберлитовых трубок кратона и фертильное вещество примитивной мантии, абсолютные значения скоростей сейсмических волн [*Pavlenkova and Pavlenkova*, 2006], данные термобарометрии [*Griffin, et al.*, 1996] и данные о тепловом потоке [*Aremieva and Mooney*, 2001].

Основная задача состоит в оценке влияния химического и фазового состава на скорость и плотность вещества ксенолитов – низко- и высокотемпературных гранатовых перидотитов и сравнении вычисленных температуры с P–T оценками по ксенолитам и термическим моделям.

Методы термодинамики позволяют переводить модели валового состава в фазовые диаграммы и физические свойства (прямая), а данные по скоростным разрезам и тепловым потокам обращать в модели распределения состава и/или температуры (обратная задача).

Расчет ведется методом минимизации свободной энергии в системе $Na_2O-TiO_2-CaO-FeO-MgO-Al_2O_3-SiO_2$ с фазами переменного состава Sp, Ol, Opx, Cpx, Gar, Ilm

Скорости Р-волн фазовой ассоциации зависят от Р–Т–Х условий, а также эффектов фазовых превращений, ангармонизма и неупругости. При приближении температуры к солидусу породы необходимо вводить поправки на эффекты неупругости, которые можно оценить через коэффициенты добротности Q₈ и Q_P.

Состав литосферы Сибирского кратона задавался по модели деплетированного вещества гранатового перидотита (GP) до глубины 180 км, ниже 180 км – по модели фертильного вещества примитивной мантии (PM) [Kuskov, et al., 2011]. Расчеты показывают, что при P–T-условиях верхней мантии различия в скоростях деплетированного и фертильного вещества малы и составляют менее 0.3% для V_P и 1% для V_S ; отсюда следует, что геотермы, рассчитанные из сейсмических данных для составов обедненного и фертильного вещества, различаются между собой не более, чем на 50°С [Kuskov, et al., 2011]. Таким образом, изменение состава от сильно деплетированного материала (гранатовые перидотиты, гарцбургиты) до фертильного вещества нормальной мантии оказывает слабое влияние на сейсмические скорости, которое трудно (или скорее невозможно) зарегистрировать сейсмическими методами [Kuskov, et al., 2006; Kuskov, et al., 2011], но

сопровождается заметным изменением плотности породы (рис. 1). Плотность фертильного вещества примитивной мантии на 2–3% выше, чем плотность деплетированного вещества, что эквивалентно изменению температуры более чем на 500°С.

Рис. 1. Скорости Р-волн и плотности рассчитаны вдоль геотерм 35 (сплошные линии) и 40 мВт/м2 (пунктир). Скорости деплетированного и фертильного вещества практически совпадают. Рост фертильности (FeO, Al₂O₃, CaO) слабо влияет на скорость сейсмических волн, но сопровождается сильным возрастанием плотности. Плотность фертильного вещества на 2–3% выше, нежели деплетированного вещества гранатовых перидотитов, что эквивалентно изменению $\Delta T \sim 500-700^{\circ}$ С

Рис. 2. Сейсмические скорости профиля Метеорит [Pavlenkova and Pavlenkova, 2006].

Для восстановления температуры и плотности нами были рассмотрены модели Н.И. Павленковой [*Pavlenkova and Pavlenkova*, 2006]. Рассматривались два профиля – Метеорит (рис. 2) и Рифт.

На рис (3, 4) показано отличие восстановленных температур и плотностей в зависимости от принятой модели состава. Так видно, что при сравнении постоянного (GP) и переменного составов (до 180 км – GP, ниже 180 км – PM) температуры отличаются не столь сильно, но плотность, восстановленная по модели переменного состава, является более соответствующей текущим

ПРОКОФЬЕВ И ДР.: ТЕПЛОВОЙ РЕЖИМ СИБИРСКОГО КРАТОНА

представлениям о величине плотности. Так плотности модели переменного состава на глубинах 210– 300 км (3.42–3.49) ближе к плотности окружающего кратон мантийного вещества по глобальной референц-модели AK135 [*Kennett, et al.*, 1995], согласно которой плотность на глубинах 210 и 310 км составляет 3.426 и 3.486 г/см³ соответственно. Плотность модели гранатового перидотита на тех же глубинах (3.40–3.42 г/см3) на 1-2% ниже плотности окружающих пород.

Рис. 3. Зависимость восстановленной температуры от принятой модели состава. Верхний рисунок – постоянный состав гранатового перидотита (GP). Нижний – переменный состав (до 180 км – GP, ниже 180 км – вещество примитивной мантии).

Рис. 4. Зависимость восстановленной плотности от принятой модели состава. Верхний рисунок – постоянный состав гранатового перидотита(GP). Нижний – переменный состав (до 180 км – GP, ниже 180 км – вещество примитивной мантии).

ПРОКОФЬЕВ И ДР.: ТЕПЛОВОЙ РЕЖИМ СИБИРСКОГО КРАТОНА

Также была определена глубина термической границы литосферы. Под термической границей литосферы, в которой теплоперенос осуществляется по кондуктивному механизму, понимается пересечение расчетного профиля температуры с адиабатой с потенциальной температурой 1200–1300°С и градиентом 0.3–0.5°С/км.

Нами использовалась адиабата 1300°С с градиентом 0.465°С/км. Полученные пересечения давали глубину термической литосферы на каждом сечении профиля. Затем рассчитанные глубины были нанесены на двумерные распределения температур (рис. 5, 6).

Рис. 5. Распределение температур под Сибирским кратоном, профиль Рифт. Переменный состав GP-PM. Черными точками показано пересечение профилей восстановленных температур с потенциальной адиабатой 1300°С. Глубина термической литосферы совпадает с изотермой 1450°С и оценивается в 300–320 км.

Рис. 6. Распределение температур под Сибирским кратоном, профиль Метеорит. Переменный состав GP-PM. Черными точками показано пересечение профилей восстановленных температур с потенциальной адиабатой 1300°С. Глубина термической литосферы совпадает с изотермой 1450°С и оценивается в 310–330 км.

Таким образом, глубина термической литосферы Сибирского кратона для исследованных профилей Метеорит и Рифт близка к изотерме 1450°С. Мощность термической литосферы оценивается в 310–330 км, что согласуется с оценками мощности литосферы по тепловым потокам [*Aremieva and Mooney*, 2001] и томографическим моделям [*Bijwaard, et al.*, 1998].

Литература

Oreshin S., L. Vinnik, L. Makeyeva, G. Kosarev, R. Kind and F. Wentzel (2002), Combined analysis of SKS splitting and regional P traveltimes in Siberia, *Geophys. J. Int., vol. 151*, pp. 393–402.

Pavlenkova G.A., N.I. Pavlenkova (2006), Upper mantle structure of the Northern Eurasia from peaceful nuclear explosion data. *Tectonophysics. vol. 416*, pp. 33–52.

ПРОКОФЬЕВ И ДР.: ТЕПЛОВОЙ РЕЖИМ СИБИРСКОГО КРАТОНА

Egorkin, A.V. (1999), Study of the Mantle on Super Long Geotraverses, *Izv.Phys. Earth (Engl. Transl.), vol. 35*, nos. 7–8, pp. 630–645].

Griffin, W.L., F.V. Kaminsky, C.G. Ryan, et al. (1996), Thermal State and Composition of the Lithospheric Mantle beneath the Daldyn Kimberlite Field, Yakutia, *Tectonophys., vol. 262*, pp. 19–33.

Artemieva, I.M. and W.D. Mooney (2001), Thermal Thicknessand Evolution of Precambrian Lithosphere: A Global Study, *J. Geophys. Res., vol. 106*, pp. 16387–16414.

Kuskov O.L., V.A. Kronrod, A.A. Prokof'ev (2011), Thermal Structure and Thickness of the Lithospheric Mantle Underlying the Siberian Craton from the Kraton and Kimberlit Superlong Seismic Profiles, *Izv.Phys. Earth (Engl. Transl.)*, vol. 147, No. 3, pp. 155–175.

Kuskov, O.L., V.A. Kronrod (2006), Determining the Temperature of the Earth's Continental Upper Mantle from Geochemical and Seismic Data, *Geochem. Int. (Engl. Transl.)*, no. 3, pp. 232–248.

Kennett B.L.N., E.R. Engdahl, R. Buland (1995), Constraints on seismic velocities in the earth from travel times, *Geophys. J. Int, vol. 122*, pp. 108–124

Bijwaard H., W. Spakman, E.R. Engdahl (1998), Closing Gap between Regional and Global Travel Time Tomography, *Geophys. Res., vol. 103*, pp. 30055–30078.