Пирохлоры: гидротермальный синтез, состав, свойства

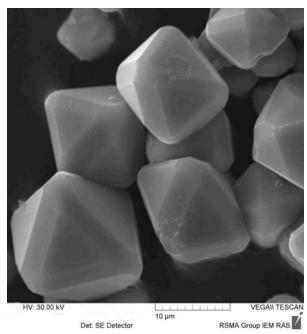
А. Ф. Редькин, Г. П. Бородулин Институт экспериментальной минералогии РАН, Черноголовка redkin@iem.ac.ru, факс: 8 (496) 522 42525, тел.: 8 (496) 522 25861

Ключевые слова: гидротермальный синтез, пирохлор, микролит, бетафит, перовскит, уран, цирконий, ванадий

Ссылка: Редькин, А.Ф., Г. П. Бородулин (2011), Пирохлоры: гидротермальный синтез, состав, свойства, *Вестник ОНЗ РАН, 3*, NZ6082, doi:10.2205/2011NZ000212.

Согласно принятой классификации минералы и искусственные химические соединения, состав которых соответствует формуле $A_{2-m}B_2O_6(O,OH,F)_{1-n}\cdot pH_2O$ (где A – катионы с зарядом (Z) от +1 до +4 и r_A = 1.1–1.5Å, B – катионы, Z от +3 до +5 и r_B = 0.7–0.9Å, m = 0.0–1.7, n = 0.0–1.0 и p = 0.0–2.5), кристаллическая структура которых отвечает пространственной группе Fd3m называются пирохлорами (Hogarth, 1977, Atencio et al., 2010). Пирохлоры находят широкое применение в качестве матриц для фиксации радионуклидов, используются в электронной промышленности (пьезоэлектрики), а также могут служить в качестве индикаторов геохимических процессов для широкого интервала PTX условий. Современные технологии позволяют получить пирохлоры разных хим. составов, тогда как составы природных пирохлоров, имеют ограничения по вхождению элементов в позиции A и B. Наибольшее распространение в природе имеют пирохлоры A за групп: пирохлоровой (A за A за за A за за A з

Синтез пирохлоров проводился в Pt ампулах на УВД при $T=800^{\circ}$ С, P=2000 бар и fO_2 соответствующей Co–CoO, Fe_2O_3 - Fe_3O_4 и Cu_2O –CuO кислородным буферам. Исходными материалами служили хорошо перетертые смеси химических реактивов NaF (или Na₂CO₃), CaCO₃, Nb₂O₅, Ta₂O₅, TiO₂, ZrO₂, V₂O₅, U₃O₈ и UO₄×2H₂O. Средой для синтеза служил насыщенный при 22°C раствор NaF. Длительность экспериментов составляла 7 суток. Фазовый состав продукты опытов изучался методом порошковой рентгеновской дифракции, а состав кристаллов определялся на электронном микроскопе VEGA–TESCAN.


Продукты опытов были представлены мелкими кристаллами, размером 0.2-20 мкм. Из смесей, содержащих избыток Nb и Та росли пирохлоры, тогда как богатые Ti, Zr и V составы давали образование перовскитам (пространственная группа Pm3m). Нами синтезирован полная серия пирохлоров пирохлор-микролитового ряда, в том числе насыщенных ураном. Максимальное содержание U^{4+} в этих пирохлорах составило 0.2-0.3 ф.е. Продукты опытов пирохлор-микролитового ряда характеризовались постоянством a_0 = 10.42 ± 0.01 Å. Фотографии типичных пирохлоров и перовскитов, полученные в наших опытах, представлены на рис. 1 и 2.

При введении урана в состав бетафитовой смеси стабилизировалась кристаллическая структура пирохлора. В составах, содержащих 0.25-0.4 $X(U^{4+})$, выход бетафита $(Na_{0.79}Ca_{0.91}U_{0.38})(Nb_{1.04}Ti_{0.96})O_{6.19}F_{0.78}$ ($a_0=10.30\pm0.01\text{Å}$) составлял 100 %, тогда как в безурановых смесях рос кубический перовскит $(Na_{0.92}Ca_{0.96})(Nb_{0.98}Ti_{1.02})O_{5.88}F_{0.06}$ ($a_0=3.851\pm0.003\text{Å}$). Отмечена прямая зависимость между количеством урана в реакционной смеси и содержанием титана в пирохлоре и обратная зависимость a_0 от $X(Ti^{4+})$. Бетафиты, полученные в системе насыщенной UO_2 и CaF_2 , содержали 0.4-0.5 U^{4+} и имели $a_0=10.27\pm0.01\text{Å}$

Как и при синтезе бетафитов, нам не удалось синтезировать богатые цирконием безурановые пирохлоры. Вхождение Zr^{4+} в пирохлоры и микролиты лимитировано, поскольку ионный радиус $r(Zr^{4+})=0.98(\text{к.ч.}=8)-0.86(\text{к.ч.}=6)$ Å находится между предельными значениями для радиусов катионов в позициях A и B. Из смеси состава $NaF+CaCO_3+0.5Nb_2O_5+ZrO_2$ образуются при $800^{\circ}C$ и P=2000 бар перовскиты $(Na_{1.62}Ca_{0.36})(Nb_{1.9}$ $Zr_{0.1})O_6$ и пирохлоры состава $(Na_{0.36}Ca_{1.36})(Nb_{1.93}Zr_{0.07})O_{6.33}F_{0.34}$. Добавление в указанную смесь 30 мас. % U_3O_8 увеличивает выход пирохлора состава $(Na_{0.86}Ca_{0.69}U_{0.46})(Nb_{1.55}Zr_{0.45})O_{6.73}F_{0.16}$ с параметром $a_0=10.45\pm0.01$ Å.

РЕДЬКИН И БОРОДУЛИН: ПИРОХЛОРЫ

В обстановке Гем-Мг буфера из смесей состава (NaCa)(NbV)O₆F и (NaCa)(TaV)O₆F были получены пирохлоры и микролиты, содержащие $X(V^{3+}, V^{4+})$ =0.18-0.19 (a₀=10.39–10.40Å) в смеси с VO₂. В системе, насыщенной уранинитом, были синтезированы пирохлоры состава (Na_{0.66}Ca_{0.99}U_{0.26})(Nb_{1.67}V_{0.33})O_{6+x}F_{0.52} (a₀=10.35±0.01Å). Несмотря на то, что синтез V-содержащих пирохлоров проходил в обстановке, отвечающей устойчивости VO₂, валентное состояние ванадия в пирохлорах остается не известным. Анализ влияния состава на параметр a₀ указывает на то, что в позиции В в пирохлоре могут находиться V^{4+} (r=0.72Å) и V^{3+} (r=0.78Å), тогда как присутствие V^{5+} (r=0.68Å) представляется маловероятным.

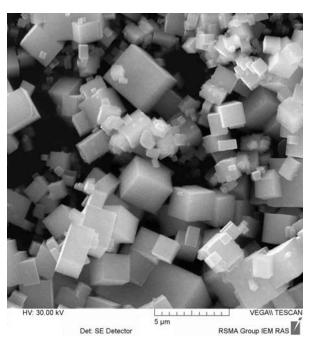


Рис. 1. Фото пирохлоров

Рис. 2. Фото перовскитов

Таким образом установлено, что пирохлор и микролит могут быть синтезированы при 800° С и 2000 бар. В ряду пирохлор-микролит существует непрерывный ряд для ниобия и тантала. Полученные данные указывают на то, что действительно Nb^{5+} и Ta^{5+} имеют очень близкие кристаллические ионные радиусы и обладают полной изоморфной смесимостью в пирохлорах.

Вхождение урана не влияет на размер элементарной ячейки в пирохлорах пирохлор-микролитового ряда, полученных в растворах 1mNaF. Максимальное содержание урана в пирохлорах пирохлор-микролитового ряда не превышает 0.2-0.3 ф.е.

Замещение 50 моль % ниобия титаном в пирохлорах приводит к изменению параметра элементарной ячейки с 10.42 до 10.27 Å и увеличению изоморфной емкости в отношении U^{4+} до 0.4- 0.5 ф.е.

Отмечена особенность замещения катионов, входящих в позицию A: Ca^{2^+} и Na^+ , на U^{4^+} . В пирохлорах пирохлор-микролитового ряда Ca^{2^+} замещается U^{4^+} , тогда как в битофитах и Zr-содержащих пирохлорах U^{4^+} замещает Na^+ . Полученные данные дают основание полагать, что такие замещения в позиции A не приводят к изменению параметра элементарной ячейки пирохлоров.

Авторы благодарны Некрасову A.H. за помощь в проведении микрозондовых анализов, Докиной T.H. и Самохваловой O.Л. за рентгеновские анализы синтетических пирохлоров.

РФФИ 11-05-01185, программа ОНЗ РАН № 2.

Литература

Atencio, D., M. B. Andrade, A. G. Christy, et al. (2010), The pyrochlores supergroup of minerals: nomenclature, *The Canad. Mineral.*, v. 48, pp. 673–698.

Hogarth, D. D. (1977), Classification and nomenclature of the pyrochlore group. *Amer. Min., v. 62*, p. 403–410.