Экспериментальное изучение взаимодействия амфиболита с растворами NaCl при 800-900°C, 5-7 кбар

Л. И. Ходоревская Институт экспериментальной минералогии РАН, Черноголовка lilia@iem.ac.ru, тел.: 8 (916)-651 2553

Ключевые слова: амфибол, изоморфизм, растворы NaCl, расплав.

Ссылка: Ходоревская, Л. И. (2011), Экспериментальное изучение взаимодействия амфиболита с растворами NaCl при 800–900°C, 5–7 кбар, Вестник ОНЗ РАН, 3, NZ6097, doi:10.2205/2011NZ000227.

Инфильтрационный привнос щелочей, кремнезема и вынос оснований при процессах гранитизации приводит к последовательному преобразованию вмещающих пород. В метабазитах магматические плагиоклазы (лабрадоры и битовниты) - замещаются андезином, олигоклазом, калишпатом и кварцем. Темноцветные минералы – клино- и ортопироксены, гранаты – с нарастанием степени гранитизации полностью исчезают, замещаясь роговой обманкой и биотитом. Амфибол - единственный темноцветный минерал метабазитов, который отмечается во всем разрезе от практически неизмененных пород до теневых скиалитов амфиболитов в гранитоидах. Это связано с тем, что в амфиболе широко проявляется изо- и гетеровалентный изоморфизм, что приводит к его устойчивости при смене флюидного режима и при изменении Т-Р параметров. Полевые исследования показывают, что по мере нарастания процесса гранитизации метабазитов в амфиболах возрастает суммарное содержание щелочей, отношение K/Na, в минералах увеличивается X_{Fe} = ${\rm Fe}^{2^{\frac{1}{+}}}/({\rm Fe}^{2^{+}}+{\rm MgO})$. Амфиболы с наиболее высоким $X_{\rm Fe}$ наблюдаются в тыловых зонах колонок гранитизации. Именно эти зоны представляют собой наиболее измененные (дебазифицированные и калишпатизированные) вмещающие породы. В этих же зонах отмечается самая высокая мольная доля хлоридов солей вплоть до значений $X_{NaCl} = 0.3$ [Ходоревская, 2005], либо $X_{NaCl} = 0.30-0.35$, X_{KCl} = 0.20-0.15 [Кориковский и. Аранович, 2010]. В высокотемпературных (800-900°С) метасоматических жилах, представляющих собой области переотложения Са, Мg, Fe, выносимых из зон фильтрации флюидов через метабазиты, также наблюдаются амфиболы с вариациями $X_{\rm Fe} = 0.5 - 0.7$ [Ходоревская и др., 2010]. Высокая железистость амфиболов не может возникать в результате воздействия высоких T-Р параметров на породы. Экспериментальные исследования показали [Helz, 1973; Wolf and Wyllie, 1994; и др.], что при частичном плавлении метабазитов в интервале температур 750-900°С и давлений 5–10 кбар железистость амфиболов невысока ($X_{\rm Fe} \approx 0.2$ –0.5). Поэтому образование высоко железистых минералов, вероятно, может являться следствием взаимодействия минерала с флюидами. Для проверки подобного предположения были проведены эксперименты по взаимодействию амфиболитов с флюидной фазой, представленной H₂O-NaCl при X_{NaCl} , меняющейся от 0 до 0.5. Результаты исследования представлены в данной работе.

Техника и методика экспериментов

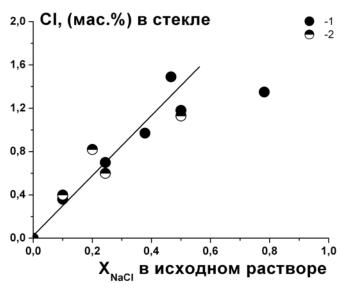
Опыты проводились при $800-900^{\circ}$ С и давлении 5 кбар на установке высокого газового давления с внутренним нагревом по закалочной методике. Исходным материалом служил тонкоизмельченные амфиболит (Amph) из мафической дайки раннепротерозойского комплекса Становой раннедокембрийской области. Основные составляющие амфиболита представлены плагиоклазом (An₄₆) – 25–30 мас. %. и амфиболом \approx 70 мас. %. Состав плагиоклаза: SiO_2 – 56.61, TiO_2 – 0.04, Al_2O_3 – 26.51, CaO – 9.46, Na_2O – 6.40, K_2O – 0.08, сумма – 99.10 масс. %. Состав амфибола: SiO_2 – 40.80, TiO_2 – 2.17, Al_2O_3 – 11.47, FeO – 17.22, MnO – 0.19, MgO – 9.57, CaO – 11.25, Na_2O – 2.62, K_2O – 1.46, Cl – 0.80, H_2O – потери при прокаливании -1.8, сумма – 99.35 масс. %.

Навеска исходной породы (обычно 25–40 мг) помещалась в ампулу, заливался раствор, соотношение навеска/ раствор = 1/10. Ампулы заваривались и выдерживались в режиме опытов в течение 7 суток, а потом закаливались со скоростью 100° в минуту. Все эксперименты проводились в золотых ампулах с тем, чтобы избежать потерь железа в стенки ампул. Фугитивность кислорода f_{02} не контролировалась, принималось, что в опытах f_{02} близка к буферу Ni-NiO [*Helz*, 1976]. После

ХОДОРЕВСКАЯ: ВЗАИМОДЕЙСТВИЯ АМФИБОЛИТА С РАСТВОРАМИ NaCl

опытов ампулы скрывались, составы минеральных фаз, расплавов и закалочных стекол, отмеченных в амфиболите, изучались методом локального рентгеноспектрального микроанализа с применением растрового электронного микроскопа «CamScan MV 2300», оснащенного энергодисперсионным рентгеновским спектрометром с полупроводниковым Si(Li) детектором с программным обеспечением «INCA Energy». Изображения поверхности исследуемых образцов получены с применением детектора вторичных электронов.

Результаты экспериментов


При 800–900°C, P=5 кбар взаимодействие амфиболита (Amph_{ucx.}) с H_2O и H_2O –NaCl флюидами выражается как: Amph_{ucx.} + (H_2O -NaCl) \rightarrow Amf + Gl ±CPx ± Pl ± OFe + Fl.

Амфибол (Amf), основная минеральная фаза, сохраняется во всех опытах независимо от задаваемой концентрации NaCl в исходном флюиде. При 800° С помимо амфибола отмечался плагиоклаз несколько более основного состава, чем исходный ($An_{46} \rightarrow An_{50-55}$). Редкие клинопироксены появлялись в результате взаимодействия амфиболита с чистой H_2O и разбавленными (1-5 мас. % соли) растворами. Увеличение концентрации NaCl в исходном растворе приводит к расширению поля устойчивости амфибола, поэтому в высококонцентрированных растворах, рассолах и расплавах солей клинопироксен не образуется. Расплав (Gl), появляющийся при частичном плавлении амфиболита, образует цементирующую массу среди минералов, закалочная фаза (Fl), осаждаемая из раствора, легко определяется и анализируется, поскольку существует в виде шариков размером от 20 до 80-150 мкм.


В таблице приведены химические составы расплавов Gl и Fl (сумма оксидов – 100 мас.%), полученные при частичном плавлении амфиболита при 900°C, 5 кбар.

№ опыта	X _{NaCl} во флюиде	SiO ₂	TiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	NA ₂ O	K ₂ O	Cl ₂ O
C-14.	Без флюида	67.32	0.31	18.15	1.58	0.39	0.31	3.71	5.78	2.45	0.00
B-8	H_2O	62.10	0.10	20.72	2.81	0.35	0.04	6.64	4.51	1.83	0.00
U-1, (Fl)	0.02	64.96	0.25	22.18	1.86	0.14	0.00	4.06	5.69	0.78	0.04
S-1, (Gl)	0.10	60.06	0.36	23.74	1.79	0.08	1.00	3.37	9.04	0.31	0.36
S-1, (Fl)	0.10	60.53	0.75	24.00	1.99	0.07	0.64	3.18	8.19	0.18	0.47
S-2, (Gl)	0.25	62.36	0.50	23.66	1.09	0.06	0.35	1.31	9.91	0.06	0.70
S-2, (Fl)	0.25	61.66	0.76	24.07	1.29	0.00	0.12	1.25	10.07	0.17	0.61
S-3, (Gl)	0.50	61.96	0.54	23.75	0.98	0.00	0.39	0.81	10.32	0.08	1.18
S-3, (Fl)	0.50	62.25	0.26	23.73	1.43	0.10	0.26	1.75	8.61	0.48	1.14

Из таблицы следует, что средний химический состав расплавов отвечает значениям: $SiO_2-60-62$ мас.%, $Al_2O_3-23-25$ %, $Na_2O-8-11$ %, (CaO+MgO+FeO) < 10%. Расплавы кварц нормативные. По мере увеличения X_{NaCl} во флюиде составы расплавов несколько обогащаются Al_2O_3 , Na_2O , обедняются CaO и K_2O , остаются кварц нормативными. Нефелин нормативные расплавы образуются только при $X_{NaCl} > 0.5$. Содержание хлора в расплаве возрастает от 0.4 до 1.5 мас.% с увеличением X_{NaCl} во флюидной фазе от 0.1 до 0.47 (рис. 1).

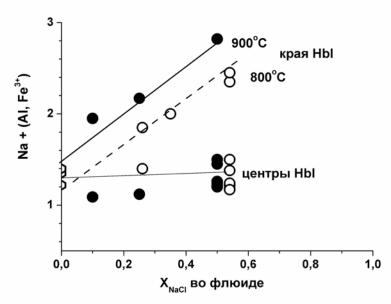


Рис. 1. Содержание Cl (масс.%) в зависимости от X_{NaCl} во флюиде: 1- в расплаве, полученном при частичном плавлении амфиболита; 2- в закалочных стеклах

Рис. 2. Амфиболы после опыта S-1. Центральная светлая – железистая часть минерала, краевая темная – магнезиальная

Исходный амфибол из амфиболита представлен паргаситом [Leake et al., 1997]. После опытов амфиболы приобретают резкую неоднородность: иногда это зональные кристаллы, в которых от центра к краю зерен возрастает магнезиальность, т.е., $\mathrm{Fe}^{2^+} \to \mathrm{Mg.}$ В других случаях краевая магнезиальная часть амфиболов отщепляется от центральной, более железистой, дефрагментируется вплоть до очень мелких размеров (рис.2). Создается впечатление, что эти высокомагнезиальные ($X_{\mathrm{Fe}} = 0$ –0.1) амфиболы постепенно растворяются. В опытах с высоким содержанием NaCl ($X_{\mathrm{NaCl}} = 0.78$) амфиболов однородны, их состав от центра к краям зерен не меняется. Зональность амфиболов отмечалась в опытах с чистой $\mathrm{H}_2\mathrm{O}$ и в растворах NaCl. Из реакции ($\mathrm{Mg}_{,\mathrm{Fe}}$) $\mathrm{He}_{,\mathrm{He}}$ 1 + $\mathrm{He}_{,\mathrm{CO}}$ 2 ($\mathrm{Mg}_{,\mathrm{He}}$ 1 + $\mathrm{He}_{,\mathrm{CO}}$ 3 в растворах приводит к преимущественному выносу Fe 6 относительно Mg из минерала. Быстрая закалка ампул приводила к тому, что выщелоченное из амфиболов Fe^{2^+} оставалось во флюидной фазе. Увеличение времени закаливания ампулы приблизительно в два раза ($\mathrm{50}^{\circ}$ в минуту), способствовало кристаллизации из флюида железистых амфиболов (вплоть до $X_{\mathrm{Fe}} = 0.9$).

Рис. 3. Соотношение X_{NaCl} во флюиде – $(Na+Al^{VI}+Fe^{3+})$ в амфиболах. Черные и светлые кружки - указанные соотношения соответственно при 900 и 800° С

Другой широко распространенный тип изоморфного замещения в амфиболе $Ca + (Mg, Fe^{2+}) \rightarrow Na + (Al, Fe^{3+})$ (ф.ед.). На рис. 3 представлено соотношение сумм указанных катионов в центральных и краевых частях минерала при 800и 900°С. Как следует из рис. 3, наблюдается прямая корреляция между содержанием NaCl во флюиде и содержанием Na + (Al, Fe³⁺) в краевых частях амфибола. Центральные части минерала сохраняют первоначальные значения указанных катионов вследствие относительной непродолжительности опытов. При 900°С значения (Na + (Al, Fe³⁺)) выше, чем при 800°С, что связано с более высоким выносом оснований $Ca + (Mg, Fe^{2+})$ из амфибола при более высоких температурах. Таким образом, результаты экспериментов показали:

- 1) При частичном плавлении амфиболитов с участием NaCl $-H_2$ O флюидов при 900°C, 5 кбар, $X_{NaCl} < 0.5$ образуются кварц нормативные расплавы. Содержание хлора в таких расплавах возрастает от 0.4 до 1.5 мас.% с увеличением X_{NaCl} во флюидной фазе от 0.1 до 0.47.
- 2) При T = 800 и 900° C во флюидах с высокой a_{H2O} происходит преимущественный переход Fe относительно Mg из амфиболов в раствор. Это может быть вынос Fe из вмещающих пород и/или его переосаждение в виде Fe-содержащих минералов, в том числе и железистых амфиболов. С увеличением X_{NaCl} во флюидах вынос Fe из амфиболов (амфиболитов) сокращается.
- 3) Сумма катионов Na + (Al, Fe³⁺) (ф.ед.) в амфиболах прямо зависит от X_{NaCl} во флюидах, что, по предварительным данным позволяет проводить оценку X_{NaCl} во флюидной фазе по химическому составу амфибола.

Исследования проведены при финансовой поддержке РФФИ, грант № 09-05-00744

Литература

Кориковский, С. П., Л. Я. Аранович (2010), Чарнокитизация и эндербитизация основных гранулитов Лапландского гранулитового пояса (южная часть Кольского полуострова, район Порьей губы): І. Петрология и термобарометрия, *Петрология*, № 4, сс. 340–368.

Ходоревская, Л. И. (2005). Флюидный режим при гранитизации коронарных метагаббро в беломорском комплексе: реконструкция на основе ассоциаций с участием скаполита. *Беломорский подвижный пояс и его аналоги: геология, геохронология, геодинамика, минерагения.* Сс. 314–315.

Ходоревская, Л. И., А. М. Ковальский, В. Б. Поляков (2010), Метаморфизм и метасоматоз гранулитовой фации на примерах меланократовых жил в метаанортозитах Колвицкого массива, Кольский полуостров, *XI Всероссийское петрографическое совещание Магматизм и метаморфизм в истории Земли*. Екатеринбург, сс. 304–306.

Helz, R. T. (1973), Phase relations of basalts in their melting ranges at P = 5 kb as a function of oxygen fugacity. Part I. Mafic phases. *J. Petrol.*, *V. 14*, pp. 249–302.

ХОДОРЕВСКАЯ: ВЗАИМОДЕЙСТВИЯ АМФИБОЛИТА С РАСТВОРАМИ NaCl

- Helz, R. T. (1976), Phase relations of basalts in their melting ranges at P = 5 kb. Part II. Melt compositions. *J. Petrol.*, *V. 17*, pp. 139–193.
- Leake, B.E, A. R. Woolley, W. D. Birch, et al. (1997), Nomenclature of amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. *Eur. J. Mineral.*, V. 9, pp. 623–651.
- Wolf., M. B., P. J. Wyllie (1994), Dehydration-melting of amphibolite at 10 kb: the effect of temperature and time. *Contrb. Mineral. and Petrol.*, *V. 115*, pp. 369–383.