Термодинамическое исследование испарения оксидных расплавов, содержащих диоксид титана

С. И. Шорников Институт геохимии и аналитической химии РАН, Москва sergey.shornikov@gmail.com

Ключевые слова: термодинамика и кинетика испарения, система CaO-TiO₂-SiO₂.

Ссылка: Шорников, С. И. (2011), Термодинамическое исследование испарения оксидных расплавов, содержащих диоксид титана, *Вестник OH3 PAH, 3*, NZ6101, doi:10.2205/2011NZ000231.

Задача определения состава оксидного расплава, изменяющегося в процессе испарения, является актуальной и находится в основе фундаментальных представлений о происхождении и составе метеоритов. В этой связи представляют интерес расплавы системы CaO-TiO₂-SiO₂, соединения которой (перовскит и титанит) входят в вещество белых включений CAI. Целью настоящей работы являлось исследование термодинамических свойств этих расплавов для расчета изменения состава расплава при испарении в интервале температур 1600-2300 К.

Информация о структуре и свойствах соединений системы CaO–TiO₂–SiO₂, а также о фазовых соотношениях в рассматриваемой системе не так обширна, однако детально не рассматривалась. Результаты масс-спектрометрических исследований, выполненных в работах [*Stolyarova et al.*, 2004; *Stolyarova and Plotnikov*, 2005], противоречат другим экспериментальным данным [*Xirouchakis et al.*, 1997; *DeCapitani and Kirschen*, 1998; *Shornikov et al.*, 2000; *Shornikov and Archakov*, 2003; Шорников, 2005].

Первая часть настоящей работы заключалась в расчете термодинамических свойств расплавов системы $CaO-TiO_2-SiO_2$ в области температур 1600-2300 К в рамках теории идеальных ассоциированных растворов.

Как и ранее для случая систем CaO–Al₂O₃–SiO₂ [Шорников, 2007], MgO–Al₂O₃–SiO₂ [Шорников, 2008], CaO–MgO–Al₂O₃–SiO₂ [Шорников, 2009] и CaO–MgO–Al₂O₃–FeO–SiO₂ [Шорников, 2009] для расчетов была применена упрощенная решеточная модель. Модель учитывала межмолекулярные взаимодействия с помощью полуфеноменологических энергетических параметров, рассчитанных из экспериментальных [Xirouchakis et al., 1997; DeCapitani and Kirschen, 1998; Shornikov et al., 2000; Shornikov and Archakov, 2003] и теоретических [Глушко и ∂_P , 1978–1982] данных. Исходные термодинамические данные учитывали 18 конденсированных фаз (11 твердых и 7 жидких) и 14 компонентов газовой фазы, перечисленных в табл. 1.

В табл. 1 приведены рассчитанные значения энергии Гиббса образования (из элементов) соединений и компонентов газовой фазы над системой CaO–TiO₂–SiO₂. Они использовались для нахождения условий равновесия в системе при заданном составе и температуре. Решение уравнения для общей энергии Гиббса исследуемой системы было найдено методом минимизации энергии Гиббса (GEMM).

Активности оксидов a(i) и энергии Гиббса образования (из оксидов) расплавов в системе CaO-TiO₂-SiO₂ ($\Delta_f G_T$) были рассчитаны для двух наиболее интересных разрезов системы: CaSiO₃-CaTiO₃ (при постоянной концентрации x(CaO), равной 50 мол. %) и CaTiO₃-SiO₂ (при постоянном соотношении мольных долей x(CaO) / x(TiO₂), равном 1). Полученные результаты изображены на рис. 1 в сопоставлении с экспериментальными данными [Shornikov et al., 2000; Shornikov and Archakov, 2003].

ШОРНИКОВ: ИСПАРЕНИЕ ОКСИДНЫХ РАСПЛАВОВ

Таблица 1. Энергии Гиббса образования (из элементов) конденсированных фаз и компонентов газовой фазы над системой CaO–TiO₂–SiO₂ при температуре 2050 K, рассчитанные в настоящей работе

Конденсированные фазы				Газовая фаза	
Твердые фазы	$\Delta_f G^{\circ}_{2050},$	Жидкие фазы	$\Delta_f G^{\circ}_{2050},$	Компоненты	$\Delta_f G^{\circ}_{2050},$
	кДж/моль		кДж/моль	газовой фазы	кДж/моль
CaO	-416.099	CaO	-404.461	Ca	-25.442
CaTiO ₃	-1071.809	CaTiO ₃	-1055.171	CaO	-76.385
Ca ₃ Ti ₂ O ₇	-2563.232			0	118.320
Ca ₄ Ti ₃ O ₁₀	-3660.494			O_2	0.000
CaTiSiO ₅	-1665.569	CaTiSiO ₅	-1697.195	O ₃	276.725
CaSiO ₃	-1043.621	CaSiO ₃	-1050.971	Ti	185.495
Ca ₂ SiO ₄	-1511.832	Ca ₂ SiO ₄	-1503.841	TiO	-128.510
Ca ₃ SiO ₅	-1921.320			TiO ₂	-336.523
Ca ₃ Si ₂ O ₇	-2540.999			Si	161.631
TiO ₂	-574.148	TiO ₂	-569.996	SiO	-257.183
SiO ₂	-540.626	SiO ₂	-541.222	SiO ₂	-313.278
				Si ₂	189.307
				Si_2O_2	-552.779
				Sia	261 005

x(TiO₂), мол. % a б $-\log a(i)$ $\log a(i)$ -2 -5 $-\Delta_f G_T / RT$ RT -2 -1 г в *x*(TiO₂), мол. % CaTiO₃ SiO₂ CaSiO,

Рис. 1. Активности оксидов (*a*, *б*) кальция (1, 5), титана (2, 6), кремния (3, 7) и энергия Гиббса образования (из оксидов) расплавов (*b*, *c*) в системах CaSiO₃–CaTiO₃ (*a*, *b*) и CaTiO₃–SiO₂ (*b*, *c*) при температуре 2050 К, полученные: 1–4 – масс-спектрометрическим эффузионным методом Кнудсена [Shornikov et al., 2000; Shornikov and Archakov, 2003], 5–8 – расчетом, выполненным в настоящей работе

Как следует из рис. 1, рассчитанные в настоящей работе активности оксидов и энергия Гиббса образования из оксидов расплавов системы CaO–TiO₂–SiO₂ удовлетворительно соответствуют экспериментальным данным. Наблюдаемые отклонения рассчитанных значений активностей оксидов от экспериментальных величин невелики – приблизительно в 2 раза. Минимальное значение энергии Гиббса образования (из оксидов) расплавов системы CaO–TiO₂–SiO₂ находится в области состава титанита (CaTiSiO₅) и составляет значительную величину – $\Delta_f G_T = -53.4$ кДж/моль.

Вторая часть настоящей работы заключалась в расчете, базирующемся на полученной термодинамической информации, изменения состава расплава системы CaO-TiO₂-SiO₂ при испарении.

Подход для расчета изменения состава расплава при испарении детально описан ранее [Шорников, 2009]. Поскольку в случае испарения расплавов системы CaO–TiO₂–SiO₂ газообразные сложные оксиды присутствуют в незначительных количествах [Archakov et al., 2000], процесс испарения расплава можно представить как испарение простых оксидов. Для расчета изменения состава расплава системы CaO–TiO₂–SiO₂ при испарении был выбран изученный ранее экспериментально [Archakov et al., 2000] состав, содержащий 31.4 мол. % CaO, 16 мол. % TiO₂ и значительное количество диоксида кремния – 52.6 мол. % SiO₂. Расчет был выполнен как для случая условий отсутствия внешнего химического воздействия (в химически нейтральных условиях), так и для случая восстановительных условий, типичных для экспериментальных исследований. Эти условия были заданы постоянным фиксированным парциальным давлением молекулярного кислорода $p(O_2) = 5.0 \cdot 10^{-5}$ атм.

Рис. 2. Активности оксидов (*a*, *б*) кальция (4), титана (5) и кремния (6) и изменение содержания оксидов (*e*, *г*) кальция (1, 4), титана (2, 5) и кремния (3, 6) в зависимости от потери веса расплава системы CaO–TiO₂–SiO₂ при испарении при температуре 2300 К в различных окислительновосстановительных условиях: (*a*, *e*) – в химически нейтральных условиях и (*б*, *г*) – в восстановительных условиях (*p*(O₂) = $5.0 \cdot 10^{-5}$ атм). Экспериментальные результаты, полученные в работе [*Shornikov et al.*, 2000] масс-спектрометрическим эффузионным методом Кнудсена, обозначены символами (1-3). Результаты расчетов, выполненных в настоящей работе, обозначены линиями (4-6)

Как следует из рис. 2, рассматриваемый расплав при испарении теряет SiO₂, перемещаясь к области оксида кальция. При уменьшении веса исходного расплава до 50 % вследствие испарения, концентрация SiO₂ уменьшилась с 52 до 15 мол. % (т. е. уменьшилась почти в 4 раза). При этом наблюдается максимальное содержание CaO в расплаве. Затем расплав полностью теряет SiO₂, испаряясь в виде перовскита CaTiO₃. Эта закономерность характерна как для случая испарения расплава в химически нейтральных, так и для случая испарения расплава в восстановительных условиях (рис. 26 и 2*г*).

Из рис. 2*в* и 2*г* наблюдаются также отличия в концентрационных зависимостях, обусловленных различными окислительно-восстановительными условиями испарения расплава. Так, в случае испарения расплава в химически нейтральных условиях, расплав полностью теряет SiO₂ при потере веса меньшей, чем в условиях эксперимента (рис. 2*в*). В случае испарения расплава в заданных восстановительных условиях, иначе – при большей потере веса расплава (рис. 2*г*). Таким образом, экспериментальные данные находятся в интервале между рассчитанными значениями, относящимся к химически нейтральным восстановительным условиям.

Легко заметить (рис. 2*a* и *в*, рис. 2*б* и *г*), что в различных окислительно-восстановительных условиях концентрационные изменения состава рассматриваемого расплава в процессе его испарения пропорциональны изменениям логарифмов величин активностей (химическим потенциалам) оксидов в расплаве. Это указывает на тесную взаимосвязь процессов испарения расплава и его термодинамических свойств (в частности, химических потенциалов компонентов расплава).

Таким образом, в рамках разработанного теоретического подхода, базирующегося на экспериментальных термодинамических данных [Шорников, 2009], исследованы термодинамические свойства силикатных расплавов, содержащих диоксид титана. Показана взаимосвязь термодинамических свойств расплава с процессами его испарения и изменением состава расплава вследствие испарения в области высоких температур (1600-2300 К).

Литература

Stolyarova, V. L., D. O. Zhegalin, S. V. Stolyar (2004), Mass spectrometric study of the thermodynamic properties of melts in the CaO–TiO₂–SiO₂ system, *Glass Physics and Chemistry, vol. 30*, no. 2, pp. 142–150.

Stolyarova, V. L., E. N. Plotnikov (2005), Vaporization processes and thermodynamic properties of oxide systems at high temperatures: experimental study and modeling, *Glass Physics and Chemistry, vol. 31*, no. 1, pp. 30–43.

Xirouchakis, D., S. Fritsch, R. L. Putnam, A. Navrotsky, D. H. Lindsey (1997), Thermochemistry and enthalpy of formation of synthetic end-member (CaTiSiO₅) titanite, *Amer. Miner., vol. 82*, no. 5, pp. 754–759.

DeCapitani, C., M. Kirschen (1998), A generalized multicomponent excess function with application to immiscible liquids in the system CaO–SiO₂–TiO₂, *Geochim. Cosmochim. Acta, vol. 62,* no. 23–24, pp. 3753–3763.

Shornikov, S. I., I. Yu. Archakov, M. M. Shultz (2000), Thermodynamic properties of the melts, containing titanium dioxide, *Titanium '99. Science and Technology. Proc. 9th World Conf. on Titanium, vol. 3*, pp. 1469–1473.

Shornikov, S. I., I. Yu. Archakov (2003), Mass spectrometric study of thermodynamic properties of the SiO₂–CaTiO₃ melts, *Proc. II Intern. Symp. on High Temperature Mass Spectrometry*, pp. 112–116.

Шорников, С. И. (2005) Термодинамика и диаграмма состояния системы «диоксид кремния – перовскит» (по результатам высокотемпературных масс-спектрометрических исследований), XV Российское совещание по экспериментальной минералогии, сс. 338–340.

Шорников, С. И. (2007), Термодинамические свойства расплавов системы CaO-Al₂O₃-SiO₂, Электрон. науч.–информ. журн. Вестник Отделения наук о Земле РАН, Т. 25. № 1, http://www.scgis.ru/russian/cp1251/h_dgggms/1–2007/informbul–1_2007/term–48.pdf.

Шорников, С. И. (2008), Термодинамические свойства расплавов системы MgO-Al₂O₃-SiO₂, Электрон. науч.–информ. журн. Вестник Отделения наук о Земле РАН, Т. 26. № 1, http://www.scgis.ru/russian/cp1251/h_dgggms/1–2008/informbul–1_2008/ magm–42.pdf.

Шорников, С. И. (2009), Исследование возможностей теоретических подходов для расчетов активностей оксидов в соединениях системы CaO–MgO–Al₂O₃–SiO₂, Электрон. науч.–информ. журн. Вестник Отделения наук о Земле РАН, Т. 27, № 1, http://www.scgis.ru/russian/cp1251/h_dgggms/1–2009/informbul–1_2009/planet–33.pdf.

ШОРНИКОВ: ИСПАРЕНИЕ ОКСИДНЫХ РАСПЛАВОВ

Шорников, С. И. (2009), Термодинамическое исследование кинетики испарения расплавов системы CaO-MgO-Al₂O₃-FeO-SiO₂, Электрон. науч.–информ. журн. *Вестник Отделения наук о Земле РАН, Т. 27,* № 1, http://www.scgis.ru/russian/cp1251/h_dgggms/1–2009/informbul–1_2009/planet–34.pdf.

Глушко, В. П., Л. В. Гурвич, Г. А. Бергман, И. В. Вейц, В. А. Медведев, Г. А. Хачкурузов, В. С. Юнгман (1978–1982), *Термодинамические свойства индивидуальных веществ*, М.: Наука, Т. 1–4.

Archakov, I. Yu., S. I. Shornikov, T. Yu. Tchemekova, M. M. Shultz (2000), The behavior of titanium dioxide in the slag melts, *Titanium '99. Science and Technology. Proc. 9th World Conf. on Titanium*, vol. 3, pp. 1464–1468.