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Was obtained of the nebula gas phase composition which agree best with the experimentally measured 
chemical compositionn of Hartley 2 comet. 
 
Key words: Solar system, evolution, cometary ices 

 
Citation: Dorofeeva, V. A., M. V. Mironenko (2012), Conditions of formation of cometary ices, Vestn. Otd. nauk Zemle, 4, 
NZ9001, doi:10.2205/2012NZ_ASEMPG 

 
 

The obtained data for the comet Hartley 2 on isotopic composition of water ice [Hartogh et al., 
2012] are evidence to it was evaporated under nebula conditions. At Т ~ 100 К a hydrogen isotopic 
composition of ice was changed according to the chemical reaction 

HDgas + H2Ogas ↔ HDOgas +H2 gas , 
which passes more efficiently in the gas phase than in the heterogenious system “Ice–H2 gas”.. During 
next cooling, H2Ogas was condensed into solid clathrate hydrates of various gases. If our assumptions 
are correct, we can reconstruct a composition of the part of the nebula, where the ice of the comet was 
formed. Such reconstruction is based on experimental data on composition of Hartley 2 comet [Meech 
et al., 2011, Meech et al., 2011; Weaver, 2001; Dello Russo, 2011] and methods of equilibrium 
thermodynamics. Variations of PT conditions in the nebula at radial distances from Sun ~ 4–10 A.U. 
according to the model [Dorofeeva, Makalkin, 2004] are shown in Fig.1. PT conditions of gas 
hydrates formation from a gas of solar composition are shown in Fig. 2.  
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Fig. 1. Variations of PT conditions in the nebula 
at radial distances from Sun ~ 4-10 A.U. Bold 
lines answer Р = 10-6 bar, more thin - Р = 10-9 bar 

Fig. 2. PT conditions of gas hydrates formation 
from a gas of solar composition according to 
[Lunine, Stevenson, 1985] 

 
The bulk chemical element composition of the nebula was taken as solar abundances according 

to [Lodders, 2010], and a component composition of the gas phase was varied taking into account it’s 
uncertainty. Necessary temperature dependencies of the equilibrium constants of corresponding 
heterogeneous reactions were derived by summarizing experimental data on conditions of formation of 
solid gas hydrates and gas ices obtained [Lunine, Stevenson, 1985; Fray et al., 2010]. For calculations 
we used CHEMEQ code [Mironenko et al., 2008], which applies minimization of Gibbs free energy of 
the system under liner mass-balance restrictions. Some results of calculations are presented in Fig.3. 
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Fig. 3. Variations of the condensed phase composition at the gas phase cooling. Solid lines – 
correspond the pressure of Р = 10-6 bar, dashed lines correspond the pressure of Р = 10-9 bar. 
Regiong, of Н2О (blue) and СО2 (pink) correspond the mole phase relations in the comet Hartley 
2. The temperature region of stability field of СО2 and СН4 clathrate hydrates is shown by 
dashed lines for pressure interval of P = 10-6–10-9 bar 

 
As a result of calculations, we obtained C-bearing species ratios of СО2 : СО : СН4 = 1 : 8 : 1 

and N-bering species ratio of NH3 : N2 = 1 : 50, which agree best with the experimentally measured 
chemical composition of Hartley 2 comet. 

Conclusions 
There were regions in Solar nebula, where initially amorphic water ice was evaporated, and as a 

result of isotopic exchange with H2 gas, it’s D/H was significantly decreased. 
During next nebula cooling, H2Ogas was condensed as crystal modifications with a possibility of 

formation of clathrates of various gases under P-T conditions of r = 4–10 A.U. 
Stone-icy bodies (comets) with high contents of volatilities may be formed at near Jupiter orbits, 

which can be considered as a source of water and other volatilities, including nitrogen, for terrestrial 
planets. 

Probably, the main mechanism of volatilities accumulation in comets, which were formed in 
Neptunian zone and in Kouiper Belt (r > 15–20 А.U.), was their sorption by water ice. 
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