Фрагментация ядер урана в железо-никелевой матрице палласитов: теоретическая оценка эффекта наложения ядер-фрагментов на распространенность первичного потока галактических космических лучей

А. В. Багуля¹, Л. А. Гончарова¹, А. И. Ивлиев², Г. В. Калинина², Л. Л. Кашкаров², Н. С. Коновалова¹, Н. М. Окатьева¹, Н. Г. Полухина¹, А. С. Русецкий¹, Н. И. Старков¹ ¹Физический Институт им. П.Н. Лебедева РАН, Москва ²Институт геохимии и аналитической химии им. В.И.Вернадского РАН, Москва

bagulya@sci.lebedev.ru; leokash@mail.ru

Приводятся результаты теоретических расчетов величин выхода ядер – продуктов процесса фрагментации высокоэнергичных (400 и 1000 МэВ/нуклон) ядер урана при их взаимодействии с ядрами железо-никелевого сплава, отвечающего по своему составу металлической матрице палласитов.

Ключевые слова: оливин, галактические космические лучи, треки заряженных частиц, фрагментация ядер урана, железо-никелевая мишень

Ссылка: Багуля, А. В., А. Б. Александров, М. С. Владимиров, Л. А. Гончарова, А. И. Ивлиев, Г. В. Калинина, Л. Л. Кашкаров, Н. С. Коновалова, Н. М. Окатьева, Н. Г. Полухина, А. С. Русецкий, Н. И. Старков (2012), Фрагментация ядер урана в железо-никелевой матрице палласитов: теоретическая оценка эффекта наложения ядер-фрагментов на распространенность первичного потока галактических космических лучей, *Вестник ОНЗ РАН, 4*, NZ9001, doi:10.2205/2012NZ ASEMPG

Введение

При трековых исследованиях зарядового спектра ядерной составляющей галактических космических лучей (ГКЛ), проводимых с 2006 года группой научных сотрудников Лаборатории элементарных частиц ФИАН и Лаборатории космохимии ГЕОХИ по программе проекта ОЛИМПИЯ [Ginzburg et al., 2005], используются кристаллы оливина, выделяемые из железоникелевой матрицы палласитов.

Методика идентификации заряда ядер основана на экспериментально установленной зависимости между скоростью травления трека вдоль следа торможения и величиной его остаточного пробега [Kashkarov et al., 2008]. Однако, в результате происходящего в (Fe,Ni)матрице палласитов процесса фрагментации, главным образом, ультра тяжелых ядер ГКЛ, происходит как занижение числа регистрируемых ультра тяжелых ядер ГКЛ, так и возрастание потока вторичных более легких ядер – продуктов процесса фрагментации.

В работе представлены результаты теоретических расчетов величины эффекта фрагментации высокоэнергичных (400 и 1000 МэВ/нуклон) ядер урана при их взаимодействии с ядрами железо-никелевого сплава, отвечающего по своему составу металлической матрице палласитов.

Методика теоретических расчетов

Количественные вычисления выхода ядер различных элементов – продуктов процесса фрагментации ядер урана при взаимодействии с ядрами мишени (Fe $_{0.9}$ Ni $_{0.1}$) выполнены путем компьютерного моделирования процесса по программе GEANT4 [*Agostinelli et al., 2003*]. В пакете GEANT4 для вычисления потерь энергии ионов в веществе предусмотрен учет всех возможных механизмов, в частности, осуществляется расчет тормозных способностей по формулам Бете-Блоха и интерполяция данных на основе таблиц ICRU (International Comission on Radiological Units and Measurements).

Для моделирования используется созданный при участии сотрудников ФИАН пакет Hadr01, входящий в состав GEANT4 в качестве официального примера его применения. Он позволяет моделировать процесс прохождения пучков ядер различных элементов через вещество. Результатом модельных расчетов являются распределения как первичных, так и вторичных ядер по параметрам, доступным для дальнейшего анализа. Наиболее информативными являются параметры, характеризующие потери энергии первичных ядер пучка вдоль следов их торможения,

БАГУЛЯ И ДР.: ФРАГМЕНТАЦИЯ ЯДЕР УРАНА В ЖЕЛЕЗО-НИКЕЛЕВОЙ МАТРИЦЕ ПАЛЛАСИТОВ

а также энергия и заряд вторичных ядер. К настоящему времени проведены тестовые расчёты прохождения ядер ¹³¹Xe, ²⁰⁷Pb, ²³⁸U через вещество в широком спектре энергий и вещества мишени. Результаты модельных расчётов дают хорошее согласие в пределах статистических ошибок с данными таблиц [*Hubert et al., 1990*], где представлены тормозные способности и пробег ионов с зарядами $2 \le Z \le 103$ для диапазона энергий от 2.5 до 500 МэВ/нуклон в различных материалах.

Результаты и обсуждение

Результаты расчета выхода ядер продуктов фрагментации ядер урана при взаимодействии с ядрами вещества мишени Fe _{0.9}Ni _{0.1}-состава представлены на следующих графиках и в таблицах.

Рис. 1. Зарядовый состав ядер – продуктов фрагментации ускоренных ядер урана (E = 400 МэВ/нуклон) при пролете Fe _{0.9}Ni _{0.1} мишени толщиной 10 мм

Рис. 2. Зарядовый состав ядер – продуктов фрагментации ускоренных ядер урана (Е = 1000 МэВ/нуклон) при пролете Fe _{0.9}Ni _{0.1} мишени толщиной 10 мм

Фрагменты ядер урана с Е_о = 95 ГэВ.

В зависимости от энергии ядер фрагментов длина их пробега в контактирующем с Fe _{0.9}Ni _{0.1}матрицей оливине может составлять от десятков микрон до нескольких миллиметров при их энергии от ~ 10 до ~ 1000 МэВ/нуклон, соответственно.

Распределение числа ядер урана с $E_o = 95$ ГэВ (400 МэВ/нуклон) по энергии и соответствующей длине их остаточного пробега (RR_{ol}) в оливине, контактирующем с Fe_{0.9}Ni_{0.1} матрицей палласитов, приведены в таблице 1.

Таблица 1. Распределение ядер U с $E_0 = 95$ ГэВ по энергии и соответствующей длине их остаточного пробега (RR_{ol}) в оливине после прохождения $Fe_{0.9}Ni_{0.1}$ – мишени толщиной 10 мм

Группа Ядер	Е, ГэВ	RR _{ol} . мм	$\Sigma N_{ m U}$	$\Sigma N_U / N_{U,o}$ (*)
Ι	30.5-22.5	1.7-1.0	683	~ 0.07
II	22.5-13.5	1.0-0.5	2124	~ 0.2
III	13.5-5.0	0.5-0.15	3108	~ 0.3
IV	≤ 5.0	≤ 0.15	4085	~ 0.4

^(*) Число ядер урана в первичном пучке $N_{U,o} = 10000$.

Для регистрации треков, образуемых этими ядрами в оливине палласитов наибольший интерес представляют ядра II-й и III-й групп, RR_{ol} для которых лежит в интервале от ~ 1.0 до ~ 0.15 мм, т.е. в пределах протяженности «цилиндрической» зоны травимого участка трека. Суммарный поток этих ядер равен ~ 50% от $N_{U,o}$. Ядра I-й группы, на долю которых приходится ~ 7% от $N_{U,o}$, вылетают в контактирующий оливин, образуя треки в пределах их протяженной зоны «иглы». Ядра IV-й группы составляют фон сравнительно короткопробежных треков ($RR_{ol} \leq 0.15$ мм), составляющих по плотности ~ 40% от $N_{U,o}$.

Фрагменты ядер U с E₀ = 238 ГэВ

В распределении числа ядер урана с $E_o = 238$ ГэВ (1000 МэВ/нуклон) по энергии на выходе Fe_{0.9}Ni_{0.1} – пластины 10 мм толщины при E = (180 ± 10) ГэВ наблюдается пик с числом ядер ~ 1100, т.е. около 10% от N_{U,0}, представляющих первичные ядра урана, потерявшие при прохождении мишени ~ 60 ГэВ от начальной энергии. RR_{ol} для этих ядер составляет ~ 25 мм. Число ядер урана с RR_{ol} = 0.5 – 1,0 мм (при $E_U = 20 \pm 2$ ГэВ) составляет 520 ядер (~ 0,5% от N_{U,0}). Ядра U с RR_{ol} от ~ 1 до 20 мм составляют основную группу (~ 90% от) ядер, образующих треки в зоне «иглы».

Выход ядер-фрагментов

Для пучка первичных ядер урана с E_o = 95 ГэВ результаты расчета выхода ядер различных элементов, условно разделенных на несколько групп, приведены в таблице 2.

Группа ядер		N N (*)	NI /NI		
N⁰	Z	$\Delta I N_Z$	$\Delta IN_Z / IN_{U,0}$		
Ι	40–49	1253	0.13		
II	50–59	585	0.059		
III	60–69	27	0.0023		
IV	70–79	72	0.007		
V	80-89	192	0.019		
VI	90–92	7142	0.71		

Таблица 2. Относительный выход ядер – продуктов фрагментации урана с энергией $E_0 = 95 \ \Gamma$ эВ в Fe _{0.9}Ni _{0.1} – мишени толщиной 10 мм

^(*) Число ядер урана в первичном пучке $N_{U,o} = 10000$.

Суммарный выход ядер-фрагментов с $Z \ge 40$ составляет около 90% от N_{U,o}. Среди них на долю ядер II-й, III-й и IV-й групп приходится примерно 7 %. Ядер-фрагментов с Z в интервале 80-89 наблюдается около 20%. Наибольший вклад, около 70% приходится на ядра с зарядом в интервале Z = 90 - 92. Для пучка первичных ядер урана с $E_o = 238 \ \Gamma 3B$ результаты расчета выхода ядер-фрагментов приведены в таблице 3.

Таблица 3. Относительный выход ядер -	продуктов фрагментации урана с энергие	ей E _o = 238 ГэВ
в Fe _{0.9} Ni _{0.1} - мишени толщиной 10 мм		

Группа ядер		ΣN_Z	$\Sigma N_Z / N_{U,o}$ (*)
N⁰	Z		- 7 -
Ι	40–49	1145	0.11
II	50-59	529	0.053
III	60–69	35	0.0035
IV	70–79	36	0.0036
V	80-89	258	0.026
VI	90-92	8180	0.81

^(*) Число ядер U в первичном пучке $N_{U,o} = 10000$.

В распределении по Z ядер-фрагментов, кроме затормозившихся 8180 ядер урана (~ 82% от суммарного потока первичных ядер урана $N_{U,o}$) на долю сверхтяжелых ядер фрагментов с Z= 80– 89 приходится около 2.5%. Ядра с зарядом в интервале 60–79 составляют ~ 0.7%. Примерно 10% и 5% приходится на ядра І-й и ІІ-й групп, соответственно.

Выводы

Количественная оценка выхода ядер-фрагментов по отношению к падающему пучку ядер урана с энергией 400–1000 МэВ/нуклон при толщине (Fe_{0.9}Ni_{0.1})-мишени 10 мм показала:

Выход вторичных ядер с зарядом в интервалах 40 < Z < 49 и 50 < Z < 59 составляет ~ (11–13) % и ~ (5–6) %, соответственно.

На ядра с зарядом в интервале 60 < Z < 79 приходится меньше ~ 1% от общего числа образующихся ядер-фрагментов.

Примерно (2–2.5) % ядер-фрагментов приходится на группу с зарядом Z = 80-89.

Доля ядер группы актинидов (Th-U) с зарядом Z = (90-92) и энергией 400–1000 МэВ/нуклон, не претерпевших фрагментации в (Fe_{0.9}Ni_{0.1})-мишени 10 мм толщины, составляет ~ (70–80)%.

Предварительная оценка суммарной величины эффекта наложения ядер – продуктов фрагментации высокоэнергичных ядер урана на распространенность первичных ядер ГКЛ с зарядом 50 < Z < 89 не превышает ~ 10 %, что, вероятно, необходимо учитывать при более точной интерпретации экспериментальных данных трековых исследований зарядового состава ГКЛ.

Работа выполнена при поддержке гранта РФФИ №10-02-00375-а и частично Программы № 22 фундаментальных исследований Президиума РАН.

Литература

Agostinelli, S., et al. (2003). GEANT4 Collaboration, Nucl. Instr.& Meth., vol. A506, p. 250.

Ginzburg, V. L., N. G. Polukhina, E. L. Feinberg, et al. (2005). Problems and Horizons of the Search for Tracks of Heavy and Superheavy Nuclei in Olivine Crystals from Meteorites (OLIMPIYA project), *Doclady Physics*, vol. 50, p. 283–285.

Hubert, F., R. Bimbot, H. Gauvin (1990). Atomic Data and Nuclear Data Tables 46, p. 1.

Kashkarov, L. L., N. G. Polukhina, N. I. Starkov, et al. (2008). Geometrical track parameters in the pallasite olivine: Identification of the cosmic ray heavy nuclei, *Radiation Measurements*, vol. 43, p. S266–S268.