Метеоритные наноалмазы и первичные космические лучи

Г. К. Устинова

Институт геохимии и аналитической химии им. В.И.Вернадского РАН, Москва

ustinova@dubna.net.ru

Изотопные аномалии ксенона в наноалмазе хондритов свидетельствуют о жестких радиационных и магнитогидродинамических условиях при вспышке последней сверхновой перед формированием Солнечной системы.

Ключевые слова: космические лучи, астрофизические источники, ударные волны, диффузионное ускорение, метеоритные наноалмазы, изотопные аномалии

Ссылка: Устинова, Г. К. (2012), Метеоритные наноалмазы и первичные космические лучи, *Вестник ОНЗ РАН, 4*, NZ9001, doi:10.2205/2012NZ ASEMPG

Проблемы происхождения космических лучей: Вопрос о происхождении космических лучей составляет одну из ключевых проблем современности. Потенциальные источники космических лучей могут находиться как в Галактике (например, вспышки сверхновых, пульсары, взрывы в ядре Галактики), так и в Метагалактике (например, близкие сверхскопления галактик, квазары) [Березинский и др., 1990]. Разработаны многочисленные модели, рассматривающие разные астрофизические объекты, их сочетания и сопровождающие процессы в качестве возможных источников космических лучей. Критерием адекватности моделей является их способность воспроизвести наблюдаемый спектр и состав первичных космических лучей (ПКЛ), энергетический диапазон которого к настоящему времени простирается до $\sim 10^{21}$ эВ [*Haungs*, 2009]. Характерными особенностями спектра ПКЛ являются изменения спектрального индекса, т.е. изломы спектра в области $\sim 10^{15} - 10^{17}$ эВ, в области $\sim 10^{16} 10^{18}$ эВ и при самых высоких энергиях $\geq 10^{19}$ эВ, а также постепенное обогащение спектра тяжелыми ионами: выше 10^{17} эВ спектр практически на ~100% состоит из железа. Существует два подхода к интерпретации экспериментальных данных: ядернофизический и астрофизичский. В ядернофизической интерпретации наблюдаемые особенности спектра ПКЛ связываются с возможным появлением при энергиях > 10¹⁵ эВ новых частиц, новых взаимодействий или новых состояний материи (например, кварк-глюонной плазмы), которые могли бы повлиять на характер спектра и состава ПКЛ. Однако последние эксперименты на Большом адронном колайдере (LHC) при энергии налетающей частицы $\geq 10^{16}$ эВ не показали каких-либо отклонений от Стандартной модели частиц и взаимодействий [LHC News. 2010], что позволяет отдать предпочтение астрофизическому аспекту.

Универсальный механизм ускорения космических лучей: Основными источниками ПКЛ в нашей Галактике являются вспышки сверхновых [Березинский и др., 1990]. Надежным обоснованием этой гипотезы послужило открытие универсального механизма ускорения космических лучей в ударных волнах, сопровождающих вспышки сверхновых [Бережко, Крымский, 1988]. При движении сброшенного вещества сверхновой в турбулентной межзвездной среде формируется ударная волна. представляющая магнитогидродинамический разрыв, на фронте которой в области сжатия вещества регулярное магнитное поле испытывает скачок и, к тому же, развивается стохастическое магнитное поле плазменной турбулентности, что создает рассеивающие центры для диффузионного рассеяния заряженных частиц. Физический смысл механизма ускорения состоит в том, что в результате диффузионного рассеяния заряженные частицы могут многократно пересекать область сжатия на фронте волны, приобретая в возникающих индукционных электрических полях прирост энергии, т.е. чем дольше частицы удерживаются в области фронта волны, тем сильнее они ускоряются. Иначе, чем больше скорость частицы, и, следовательно, ее пробег до рассеяния, тем чаще и с более далеких расстояний частица может вернуться в область фронта и получить

УСТИНОВА: МЕТЕОРИТНЫЕ НАНОАЛМАЗЫ

прирост скорости. В результате формируется степенной спектр частиц $F(E)\sim E^{-\gamma}$, с показателем $\gamma=(\sigma+2)/(\sigma-1)$, где σ – степень сжатия вещества на ударном фронте (Бережко, Крымский, 1988). Очевидно, что в сильных ударных волнах (при $\sigma>>1$) может сформироваться очень жесткий спектр ускоренных частиц (с $\gamma\to 1$). Аналогично, обладающие большим пробегом тяжелые ионы, будут обладать приоритетом ускорения, что приводит к обогащению спектра тяжелыми ионами пропорционально A/Z, где A – массовое число, а Z – заряд иона.

Фактически процесс диффузионного ускорения частиц ударными волнами состоит в выбивании ударной волной новых частиц из фоновой плазмы и в перекачивании частиц из низкоэнергичной области спектра в его высокоэнергичную часть. Это приводит к увеличению потоков ядерноактивных частиц выше пороговой энергии ядерных реакций и, соответственно, к увеличению скоростей образования изотопов в реакциях расщепления (см. [Устинова, 2007] и ссылки там). Кроме того, изменение энергетического спектра ядерноактивных частиц приводит к изменению средневзвешенных по спектру сечений образования многих изотопов, функции возбуждения которых чувствительны к форме спектра частиц. В результате, например, в переработанных ударными волнами оболочках сверхновых, формируются совершенно другие соотношения изотопов и элементов, чем в веществе, не затронутом такой переработкой. Действительно, в образцах внеземного вещества наблюдаются многочисленные изотопные аномалии, которые могли быть обусловлены такими нарушениями изотопных соотношений [Устинова, 2002; 2007; 2011а].

Изотопные аномалии ксенона В реликтовых зернах наноалмаза. идентифицированных в углистых и неравновесных обыкновенных хондритах, представляют несомненно особый интерес [Huss, Lewis, 1995]. Для метеоритных наноалмазов наблюдается бимодальный характер выделения ксенона: в основном, в виде компоненты Хе-Р3 с практически солнечным изотопным составом и аномальной компоненты Xe-HL с экзотическим изотопным составом (обогащенным в ~2 раза легкими изотопами ¹²⁴Xe, ¹²⁶Xe и тяжелыми изотопами ¹³⁴Хе, ¹³⁶Хе). В дополнение к процессам нуклеосинтеза, все изотопы ксенона могли образовываться в реакциях расщепления близлежащих ядер Ba, Cs, Се и La частицами высоких энергий [Устинова, 2007; 2011а]. Аномальная компонента Хе-НL в метеоритном наноалмазе была сформирована одновременно с синтезом самих наноалмазов при прохождении ударной волны от вспышки последней сверхновой перед образованием Сонечной системы [Устинова, 2011а]. Действительно, поскольку коллапс протосолнечного облака в протозвезду сопровождается гигантскими изменениями физического состояния вещества, все ранее синтезированные наноалмазы, если и сохранились, то все же потеряли все свои благоролные газы. Последняя же сверхновая не была SnII [Устинова, 2007]. Отсутствие избытков тяжелых вымерших радионуклидов (продуктов r-процесса) в CAI углистых хондритов с интервалом образования ~1 млн лет указывает на то, что последней сверхновой при формировании Солнечной системы была углеродно-детонационная сверхновая SnIa, не обладавшая ни тяжелым ядром, ни водородной оболочкой [Устинова, 2007]. При ее вспышке синтезировались все породообразующие элементы вплоть до пика железа, но продукты r-процесса отсутствовали. Это выдвигает реакции расщепления на ключевую роль в генерации изотопов ксенона, захваченного наноалмазом.

Моделирование скоростей образования изотопов ксенона в реакциях расщепления близлежащих ядер Ва, Сs, Се и La протонами высоких энергий с разной жесткостью спектра (при вариации γ от 1.1 до 6) показывает [Устинова, 2011а] (см. строки 3 и 6 табл. 1), что наблюдаемые в хондритах изотопные соотношения в компоненте Xe-HL практически во столько же раз выше соответствующих изотопных соотношений в компоненте Xe-P₃ [Huss, Lewis, 1995], во сколько раз изотопные соотношения ксенона, генерированные в жестких радиационных условиях переработки вещества ударными волнами (γ =1.1, например, в расширяющихся оболочках сверхновых), выше, чем в веществе, не затронутом такой переработкой (γ =3, например, в основном объеме протосолнечного облака). Это выявляет спаллогенную природу как аномальной, так и нормальной компонент ксенона и указывает на разную жесткость энергетического спектра ядерноактивных частиц как на основную причину различия их изотопных систем.

Из табл. 1 следует, что только для генерации самых тяжелых изотопов ¹³⁴Хе и ¹³⁶Хе реакций расщепления недостаточно и требуется дополнительный нуклеогенетический источник. Однако наиболее благоприятный для синтеза наноалмаза фронт взрывной ударной волны был обогащен этими изотопами из-за преимущественного ускорения на ударном фронте

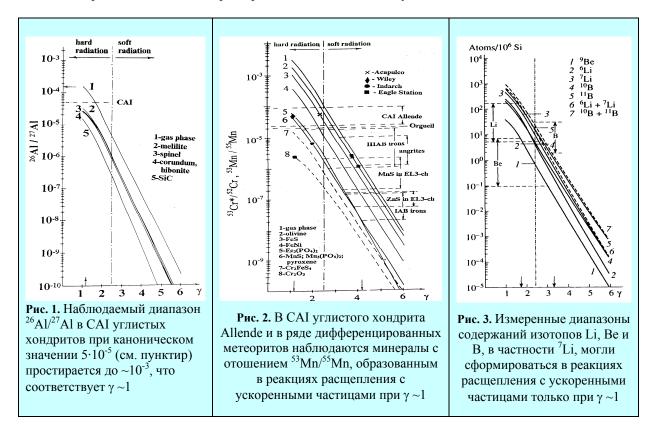
УСТИНОВА: МЕТЕОРИТНЫЕ НАНОАЛМАЗЫ

именно тяжелых изотопов среды [Бережко, Крымский, 1988], в частности, продуктов r-процесса от предшествующих вспышек SnII. Таким образом, при синтезе наноалмаза в ударной волне от вспышки SnIa захватывался ксенон, образованный в реакциях расщепления ускоренными ударной волной протонами, а также тяжелые изотопы ксенона от предшествующих вспышек сверхновых, которыми фронт волны был обогащен, что и сформировало аномальную компоненту Xe-HL. Одновременно мог захватываться и Xe-P3, но, скорее всего, эта компонента имплантировалась позднее при однородном перемешивании сверхзвуковой турбулентностью вещества сверхновой и протосолнечного облака.

Таблица 1. Изотопные соотношения ксенона в компонентах $Xe-HL^a$ и $Xe-P_3^a$ в наноалмазе хондритов и при его генерации ускоренными в ударных волнах ядерно-активными частицами с

разі	ной жесткостью	спектра	$F(>E_0)$	$\sim E^{-\gamma}$: m	ри $\gamma = 1.1 \mu$	$\gamma = 3$

разн	вазной жесткостью спектра $F(\geq E_0) \sim E^{-1}$. при $\gamma = 1.1$ и $\gamma = 3$												
N	Xe components	$\frac{^{124}Xe}{^{132}Xe}$	$\frac{^{126}Xe}{^{132}Xe}$	$\frac{^{128}Xe}{^{132}Xe}$	$\frac{^{129}Xe}{^{132}Xe}$	$\frac{^{130}Xe}{^{132}Xe}$	$\frac{^{131}Xe}{^{132}Xe}$	$\frac{^{134}Xe}{^{132}Xe}$	$\frac{^{136}Xe}{^{132}Xe}$				
1	Xe-HL ^a	0.0084	0.0057	0.091	1.06	0.154	0.844	0.636	0.7				
2	$Xe-P_3^a$	0.0045	0.004	0.081	1.04	0.159	0.823	0.377	0.31				
3	$\frac{Xe - HL^{a}}{Xe - P_{3}^{a}}$	1.86	1.43	1.12	1.02	0.97	1.03	1.85	2.26				
4	<i>Xe</i> (γ∼ 1)	0.58	1.38	3.16	4.16	1.29	9.61	0.036	0.0065				
5	$Xe(\gamma=3)$	0.31	0.90	2.69	4.44	1.18	10.44	0.026	0.0045				
6	$\frac{Xe\ (\gamma \sim 1)}{Xe\ (\gamma = 3)}$	1.87	1.53	1.17	0.94	1.09	0.92	1.38	1.44				
7	$\frac{Xe (\gamma \sim 1)}{Xe - HL^{a}}$	69.05	242.11	34.73	3.92	8.38	11.39	0.057	0.0093				
8	$\frac{Xe (\gamma=3)}{Xe-P_3^a}$	68.89	225.00	33.21	4.27	7.42	12.69	0.069	0.0145				


^а По данным работы [*Huss, Lewis, 1995*]

В табл. 1 сравниваются также наблюдаемые изотопные соотношения ксенона в компоненте Xe-HL с теоретическими при γ =1.1 (строчка 7) и в компоненте $Xe\text{-}P_3$ с теоретическими при γ =3 (строчка 8). Хорошо видно, что сохранившийся в наноалмазе ксенон существенно тяжелее, чем первоначально генерированный, причем практически в одинаковой степени для обоих компонент. Последнее говорит о том, что приведшие к такому утяжелению процессы произошли уже после формирования этих компонент, скорее всего, во время аккреции. Действительно, многократные акты частичной рекристаллизации зерен наноалмаза на стадии молодого Солнца приводили к диффузии и улетучиванию ксенона из разрушенных ловушек, трещин и других нарушений кристаллической решетки и, как следствие, к постепенному обогащению изотопной системы сохранившегося ксенона тяжелыми изотопами, в сравнении с его исходной изотопной системой при генерации.

Магнито-гидродинамические условия в ранней Солнечной системе: Полученные результаты впервые демонстрируют количественные оценки изотопных аномалий в первичном веществе, что предоставляет тонкий инструмент исследования процессов в ранней Солнечной системе [Устинова, 2011а]. К тому же, впервые конкретизированы магнитогидродинамические условия ускорения частиц на стадии свободного разлета ударной волны при вспышке SnIa. Полученные экспериментальные основания формирования степенного спектра частиц с индексом у =1.1 свидетельствуют о том, что степень сжатия вещества на фронте взрывной ударной волны от вспышки SnIa составляла σ=31. что при $σ ∝ M^{3/4}$ соответствует числу Маха $M\sim97$ [Устинова, 2011b]. Отсюда следует, что пропорциональное степени сжатия межзвездное магнитное поле ($B\sim10^{-5}$ Γ c) на фронте ударной волны возрастало в 31 раз, и во столько же раз возрастала пропорциональная магнитному полю максимальная энергия ускоренных частиц. Поскольку среднее межзвездное магнитное поле достаточно для ускорения протонов до ~10¹⁴ эВ [Березинский и др., 1990], то при ускорении взрывной ударной волной достигались уже энергии ~3·10¹⁵ эВ. Как модифицировались эти энергии при дальнейшей эволюции ударной волны в сопутствующих процессах, какую долю они вносили в суммарный спектр ПКЛ от разных источников и для какой части спектра оказывались определяющими, должны показать

УСТИНОВА: МЕТЕОРИТНЫЕ НАНОАЛМАЗЫ

дальнейшие исследования. Действительно, эффекты высоких радиационных условий наблюдаются в вымерших радионуклидах в CAI углистых хондритов (см. рис.1 и 2, для 26 Al и 53 Mn, соответственно), а также следуют из распространенностей изотопов легких элементов Li, Ве и В (рис.3) [*Устинова*, 2002]. Поскольку интервал образования CAI \sim 1 млн лет [*Srinivasan et al*, 1996], стадия свободного разлета взрывной ударной волны была достаточно продолжительной и должна была внести заметный вклад в формирование наиболее высокоэнергичной части спектра первичных космических лучей.

Работа частично поддержана Программой № 22 фундаментальных исследований Президиума РАН.

Литература

Березинский, В. С., С. В. Буланов, В. Л. Гинзбург, В. А. Догель, В. С. Птускин (1990). Астрофизика космических лучей. М.: Наука.

Бережко, Е. Г., Г. Ф. Крымский (1988). Ускорение космических лучей ударными волнами, $У\Phi H\ 154$, сс. 49–91.

Устинова, Г. К. (2002). Механизмы формирования изотопной гетерогенности первичного вещества Солнечной системы в ударных волнах. *Геохимия* № 9, сс. 915–932.

Устинова, Г. К. (2007). К проблеме происхождения Солнечной системы: закономерности фракционирования благородных газов в ударных волнах. *Астрон. вестн.* 41, сс. 252–277.

Устинова, Г. К. (2011а). Происхождение аномального ксенона в наноалмазе хондритов при вспышке последней сверхновой перед формированием Солнечной системы. *Геохимия № 6*, сс. 581–594.

Устинова, Г. К. (2011б). Эффекты диффузионного ускорения частиц ударными волнами в первичном веществе Солнечной системы. *Доклады РАН 437*, сс. 472–476.

Haungs, A. (2009) *High-light talk 31st ICRC* Lodz. http://icrc2009.uni.lodz.pl/dl.php?fname=haungs.pdf

Huss, G. R., R. S. Lewis (1995). Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type. *GCA* 59, cc. 115–160.

LHC News (2010). http://elementy.ru/LHC/news

Srinivasan, G., et al. (1996). Ion microprobe studies of Efremovka CAIs: II. Potassium isotope composition and ⁴¹Ca in the early Solar system. *GCA* 60, cc. 1823–1835.