Исследование взаимодействий N–C–H–O летучих с Fe содержащими силикатными расплавами при высоких давлениях и заданной летучести водорода

А. А. Кадик,¹ Н. А. Куровская¹, Ю. А. Игнатьев¹, Н. Н. Кононкова¹, Е. Б. Крюкова¹, В. А. Дорофеева¹, В. В. Колташев² ¹Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва ²Научный центр волоконной оптики РАН, Москва

kadik@geokhi.ru

Для регулирования парциального давления водорода при изучении растворимости летучих соединений в железосодержащих силикатных расплавах при высоких давлениях представлена оригинальная конструкция двойной Pt капсулы с исследуемым образцом в верхней камере и кислородным буфером с добавкой воды в нижней камере. С использованием разработанной двухкамерной Pt ампулы проведен эксперимент с расплавом ферробазальтового состава при 1.5 ГПа, 1400°С и fH_2 , определяемой буфером Fe-FeO + 10 масс. % H₂O, который позволил оценить особенности предлагаемого метода регулирования режима fH_2 в исследуемых силикатных системах.

Ключевые слова: эксперимент, растворимость летучих, силикатный расплав, летучесть кислорода и водорода

Ссылка: Кадик, А. А., Н. А. Куровская, Ю. А. Игнатьев, Н. Н. Кононкова, Е. Б. Крюкова, В. А. Дорофеева, В. В. Колташев (2012), Исследование взаимодействий N–C–H–O летучих с Fe содержащими силикатными расплавами при высоких давлениях и заданной летучести водорода. *Вестник OH3 PAH. 4*, doi:10.2205/2012NZ_ASEMPG

Создание контролируемого режима водорода в экспериментах при высоких давлениях относится к одной из сложнейших проблем экспериментальной геохимии. Наиболее распространенным является использование для этих целей так называемого метода двойных ампул, разработанного [*Eugster, 1962*]. Сущность метода состоит в том, что исследуемое вещество помещается во внутреннюю ампулу, буфер – во внешнюю, в которой происходит генерация водорода с последующей диффузией H_2 через стенки внутренней Pt ампулы к месту изучаемых окислительно–восстановительных реакций. Летучесть водорода может быть задана твердыми кислородными буферами с добавками H_2O (Fe-FeO+H₂O, Ni-NiO+H₂O, Co-CoO+ H₂O и др.).

Рис. 1. Продольный разрез двойной капсулы после эксперимента:

1 – Fe-базальтовое стекло; 2 – Pt стенка; 3,4 – W фольга; 5 – разделительный Pt диск; 6 – Pt стенка; 7 – Pt-W реакционный слой; 8 – буфер (Fe-FeO) + H₂O; 9 – графитовый диск; 10,11 – Pt крышки

Авторами разработан другой вариант метода двойных Pt ампул. Сконструирована единая двухкамерная Pt капсула (рис. 1), которая состоит из верхней и нижней камер, разделенных Pt диском, приваренным к их стенкам.

Высота двухкамерной капсулы составляет ~15 мм, диаметр 5 мм. В верхнюю камеру помещается исследуемое вещество, в нижнюю – буферный ансамбль с добавкой H₂O. Стенки Pt камер футерируются W фольгой толщиной 0.05 мм для ограничения реакционного взаимодействия Pt с Fe содержащим силикатным расплавом и железом буферной смеси. Открытые концы нижней и верхней камер закрываются Pt крышками, завариваются дуговой сваркой. Поступление Н₂ из нижней камеры с буфером в силикатный расплав верхней камеры осуществляется путем диузии через разделительный Рt диск. Преимуществом данной двухкамерной капсулы являффется возможность использования в эксперименте большой массы исследуемого вещества и буфера.

С использованием разработанной двухкамерной Pt капсулы проведен эксперимент с расплавом ферробазальтового состава при 1.5 ГПа, 1400°С и fH₂, определяемой буфером Fe-FeO + 10 масс.% H₂O, который позволил оценить возможности предлагаемого метода регулирования режима fH₂ в исследуемых силикатных системах. Эксперимент выполнен на установке типа цилиндр-поршень [Слуикий, 1962]. Температура контролировалась Pt-Pt₁₀Rh термопарой с точностью ±(5-10)°С, неопределенность в измерении давления составляла ±0.1 ГПа. Образец ферробазальтового состава массой 95 мг помещался в верхнюю камеру двойной Рt капсулы. Снизу образца помещался графитовый диск толщиной 0.2 мм. Открытый конец верхней камеры закрывался Pt крышкой, заваривался дуговой сваркой. В нижнюю камеру помещался буфер (Fe-FeO) массой ~280 мг с добавкой 10 масс. % H₂O (28 мг). Открытый конец нижней камеры также закрывался Рt крышкой и заваривался дуговой сваркой. Стенки камер изолировались W фольгой толщиной 0.05 мм [Литвин, 1981]. Длительность опытов составляла 60 мин

Для определения степени диффузии водорода в исследуемый образец использован электронный микрозондовый анализ и ИК спектроскопия стекла – продукта закалки ферробазальтового расплава. С целью оценки взаимодействия материала ампул с ферробазальтовым расплавом и Fe-FeO буфером методом электронного микрозондового анализа исследован химический состав стенок Pt ампул, Pt перегородки между камерами и W фольги.

Согласно микроскопическим исследованиям продукты закалки верхней камеры представляют собой желтовато-коричневатое прозрачное стекло, которое содержит микроскопические капли Fe размером около 5 мкм. Более низкое содержание FeO в стекле после эксперимента (15.4 масс. %) по сравнению с его содержанием в исходном ферробазальтовом стекле (18.0 масс. %) свидетельствует о некотором восстановлении железа силикатного расплава, которое связано с диффузией водорода из нижней камеры двойной капсулы и его реакцией с FeO (табл.1).

Верхняя камера									
Fe базальтовое	Na.O	MaO	SiO.	Al-O-	K.0	CaO	FoO	C	Cymma
Стекло	1 1 a ₂ U	MgO	5102	$A1_2O_3$	K ₂ O	CaU	reo	C	Сумма
а) исходное	2.68	4.98	49.18	13.12	0.36	8.40	18.01	н/о	97
б) после	2 58(6)	4 52(6)	51.10(18)	13 49(6)	0.36(2)	8 29(9)	15.42(20)	0.42(11)	96.17

Таблица 1. Химический состав продуктов закалки ферробазальтового расплава и буферной смеси после эксперимента при 1400°С и 1.5 ГПа, масс. %.

эксперимента Нижняя камера

	С	Pt	FeO	WO ₃	Сумма
а) сплав Fe	0.78(6)	0.02(3)	95.82(24)	3.06(8)	99.71
	С	FeO	WO ₃	Сумма	_
б) FeO	0.53(11)	95.71(20)	0.69(19)	96.97	
в)твердый раствор Оксидов W и Fe	0.35(19)	44.8(55)	49.28(74)	94.58	

Рис. 2. ИК спектр Fe-базальтового стекла – продукта закалки Fe-базальтового расплава, равновесного с буфером (Fe-FeO) + 10 масс.% H₂O при 1400°C и 1.5ГПа

ИК спектр ферробазальтового стекла – продукта закалки силикатного расплава (рис. 2) подтверждает, что водород из нижней камеры диффундировал в верхнюю камеру с Fe содержащим силикатным расплавом. Диффузия водорода сопровождалась реакцией восстановления железа с образованием в расплаве связей О–Н (ОН⁻, H₂O). Общая концентрация воды в ферробазальтовом стекле составляет 0.49 масс.%.

Продукты эксперимента нижней камеры представлены тремя фазами: сплавом Fe с вольфрамом и углеродом, вюститом (FeO) и оксидным твердым раствором FeO–WO₃ (табл.1). Последняя фаза является результатом взаимодействия буфера Fe–FeO с W фольгой.

Верхняя камера:	С	Pt	Fe	W	Сумма
<i>Рt</i> -стенка	0.24(8)	98.76(97)	0.28(61)	0.14(14)	99.42
<i>W</i> –фольга	0.38(4)	н/о	0.2(3)	99.7(30)	100.28
Разделительный Pt диск	0.06(10)	99.73(19)	0.04(3)	н/о	99.83
Нижняя камера:	С	Pt	Fe	W	Сумма
<i>Рt</i> -стенка	0.25(18)	99.54(40)	0.03(1)	н/о	99.82
<i>Рt–W</i> реакционный слой	0.47(18)	71.00(93)	7.86(74)	21.43(41)	100.76

Таблица 2. Химический состав Pt ампулы и W фольги после эксперимента, масс.%

В верхней камере содержание Fe в вольфрамовой фольге и в стенках Pt капсулы составляет около 0.3 масс. % (табл. 2). Это позволяет считать, что влияние материала ампулы на содержание FeO в расплаве несущественно. Также не наблюдается заметного взаимодействия W фольги со стенками Pt ампулы. В стекле, стенках Pt ампулы и W фольге обнаружено присутствие некоторого количества углерода (0.4–0.6 масс. %). Его образование может быть связано с диффузией в систему углерода графитового диска и графитового нагревателя при высоких температурах и давлениях. В нижней камере установлена зона реакционного взаимодействия W фольги со стенками Pt ампулы, которая характеризуется высоким содержанием Fe и W (7.8 и 21.4 масс. %, соответственно).

Проведена оценка величины парциального давления водорода, генерируемого в нижней камере двойной капсулы буфером (Fe-FeO) + 10 масс. % H₂O в условиях эксперимента (T=1400°C, P=1.5ГПа). Расчет производился по алгоритму, реализующему принцип минимизации функции свободной энергии Гиббса при наличии линейного и нелинейного ограничений для закрытой системы. В качестве источника термодинамической информации использовался справочник [Гурвич, 1962]. Величина парциального давления водорода составляет 0.8 ГПа, или 3.9 логарифмических единиц.

Величина fO_2 в верхней камере с силикатным расплавом и равновесной металлической фазой во время эксперимента оценена на основании равновесия $FeO_{(расплав)} = Fe_{(металл)} + \frac{1}{2}O_2$.

КАДИК И ДР.: ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЙ N-С-Н-О

Согласно [*Drake et al*, 1989], она может быть представлена относительно буферного равновесия Fe-FeO(IW) как $\Delta \log fO_2(IW) = \log fO_2(IW) - \log fO_2^{3\kappa cn} = 2\log(a_{FeO}/a_{Fe})$ или

 $\Delta \log fO_2(IW) = 2\log(x_{FeO}/x_{Fe}) + 2\log(\gamma_{FeO}/\gamma_{Fe})$, где $\Delta \log fO_2(IW)$ представляет собой разницу между $fO_2(IW)$ буферного равновесия Fe-FeO(IW) и fO_2 в эксперименте; $a_{Fe} = x_{Fe} \cdot \gamma_{Fe}$ – активность Fe в металлическом сплаве, x_{Fe} и γ_{Fe} – мольная доля и коэффициент активности Fe соответственно; $a_{FeO} = x_{FeO} \cdot \gamma_{FeO}$ – активность FeO в расплаве, x_{FeO} и γ_{FeO} – мольная доля и коэффициент активности FeO соответственно. При γ_{FeO} в силикатных расплавах, равном 1.3±0.3 [O'Neil et al, 1993], и значениях γ Fe, близких к 1 в жидких сплавах с концентрацией Fe более 90 масс.%, летучесть кислорода в эксперименте при исследуемых условиях соответствует $\Delta \log fO_2(IW) = -(3.0\pm0.2).$

Таким образом, представлена оригинальная конструкция двойной Pt капсулы с исследуемым образцом в верхней камере и кислородным буфером в присутствии воды в нижней камере, которая может быть использована для исследования взаимодействий в железосодержащих силикатных расплавах при высоких давлениях и фиксированной летучести водорода.

Работа выполнена при поддержке гранта РФФИ № 11-05-00926, Программы ОНЗ РАН №9

Литература

Eugster, H. P., D. R Wones. (1962). Stability relations of the ferruginous biotite, annite, J. *Petrol.*, v.3, pp. 82–125.

Слуцкий, А. Б. (1962). Установка для геохимических исследований в условиях сверхвысоких давлений и повышенных температур, Сб. Экспериментальные исследования в области глубинных процессов, М.: Изд-во Академии наук СССР, сс. 212–215.

Литвин, Ю. А. (1981). К методике исследования при высоком давлении фазовых равновесий с участием железосодержащих магматических расплавов, *Геохимия*, № 8, сс. 1234–1242.

Гурвич, Л. В. (1962). *Термодинамические свойства индивидуальных веществ*. Справочник. Москва.

Drake, M. J. et al. (1989). V, Cr, and Mn in the Earth, Moon, EPB, and SPB and the origin of the Moon: Experimental studies, *Geochimica et Cosmochimica Acta*, v. 53, pp. 2101–2111.

O'Neill, H. S. C. et al. (1993). Thermodynamic data from redox reactions at high temperatures: I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe –"FeO", Co–CoO, Ni–NiO and Cu–Cu₂O oxygen buffers, and new data for the W–WO₂ buffer, *Contrib. Mineral. Petrol.*, v. 114, pp. 296–314.