Анализ спектров комбинационного рассеяния при исследовании форм растворения водорода, азота и кислорода в продуктах плавления ранней мантии Земли

А. А. Кадик¹, Ю. А. Литвин², В. В. Колташев³, В. Г. Плотниченко³, Т. И. Цехоня¹, Н. Н. Кононкова¹ ¹Институт геохимии и аналитической химии РАН им. В. И.Вернадского, Москва ²Институт экспериментальной минералогии РАН, Черноголовка ³Научный центр волоконной оптики РАН, Москва

kadik@geokhi.ru; kvv@fo.gpi.ru

Изучены стекла, полученные в ходе эксперимента в системе $(NaAlSi_3O_8)_{80}$ - $(FeO)_{20} + Si_3N_4$. Проведены анализ и разложение Раман спектров на составные полосы в области 2800-3800 см⁻¹. Корреляционная зависимость интенсивности полос спектра от летучести кислорода $\Delta lg / O_2 (IW)$ позволяет разложить их на несколько групп и с их помощью выявить отдельные молекулы и комплексы в экспериментальных образцах.

Ключевые слова: эксперимент, формы растворения О, Н и N; железо-силикатная система, ИК и КР спектроскопии.

Ссылка: Кадик, А. А., Ю. А. Литвин, В. В. Колташев, В. Г. Плотниченко, Т. И. Цехоня, Н. Н. Кононкова (2012), Анализ спектров комбинационного рассеяния при исследовании форм растворения водорода, азота и кислорода в продуктах плавления ранней мантии Земли, *Вестник OH3 PAH*, *4*, NZ9001, doi:10.2205/2012NZ_ASEMPG.

Для выявления форм нахождения летучих компонентов в железо-силикатном расплаве было проведено изучение спектров комбинационного рассеяния (КР) стекол – продуктов эксперимента. Эксперимент проведен на установке анвильного типа при давлении 4 ГПа и 1550 $^{\circ}$ С в условиях контролируемой летучести водорода. Исходный материал для опытов представлял собой тонкодисперсную смесь альбитового (NaAlSi₃O₈) стекла (80 вес. %) и FeO (20 вес. %), к которой был добавлен порошкообразный нитрид кремния (Si₃N₄) в количествах 1, 3, 5 и 7 вес. % (образцы L5, L6, L7, L8, соответственно).

Образцы получены на установке анвильного типа при давлении 4 ГПа и 1550 °С в условиях контролируемой летучести водорода. Исходный материал для опытов представлял собой тонкодисперсную смесь альбитового (NaAlSi₃O₈) стекла (80 вес. %) и FeO (20 вес. %), к которой был добавлен порошкообразный нитрид кремния (Si₃N₄) в количествах 1, 3, 5 и 7 вес.%.

Были измерены спектры комбинационного рассеяния (КР) стекол в области 20–4200 см⁻¹. Анализ спектров, разложение на составные полосы, производилось в диапазоне 2800–3800 см⁻¹, рис. 1. Приближенная нормировка спектров приводилась на полосу в районе 490 см⁻¹ – основную полосу силикатного стекла. Разложение исходного спектра на гауссовы компоненты происходило с учетом положения и полуширины компонент в спектрах, где они явно определены. Условно полосы можно разбить по корреляции интенсивности на следующие группы:

– полоса на 2915 см⁻¹, характеризует молекулу CH_4 , ее интенсивность растет с увеличением $\Delta lg fO_2(IW)$;

– 2 полосы, основная с максимумом на 3550–3570 см⁻¹ и ее широкий низкочастотный хвост на 3163 см⁻¹, основная компонента – уширенный и смещенный спектр ОН-групп в чистом кварцевом стекле, дополнительная, скорее всего, характерна для наших образцов, интенсивность обоих полос растет с увеличением $\Delta lg fO_2(IW)$;

– широкая (~ 120–160 см⁻¹) полоса с максимумом в районе 3300 см⁻¹, может характеризовать молекулярную воду в наших образцах, ее интенсивность в противовес ОН-группам, уменьшается;

-2 узкие (28–30 см⁻¹) полосы на 3185 и 3288 см⁻¹, их концентрация растет с уменьшением $\Delta lgfO_2(IW)$;

-2 полосы на 3320 см⁻¹ и 3370–3390 см⁻¹ (четкое разложение полосы затруднено из-за малой интенсивности), их концентрация растет с уменьшением $\Delta lg fO_2(IW)$.

КАДИК И ДР.: АНАЛИЗ СПЕКТРОВ КОМБИНАЦИОННОГО РАССЕЯНИЯ

Последние 4 компоненты могут быть приписаны комплексам NH₂⁺ (≡Si–O–NH₂) и NH₂⁻ (=Si-NH₂) соответственно. По другой интерпретации эти полосы могут характеризовать молекулу NH_3 и ион NH_4^+ соответственно.

Рис. 1. Разложение спектров КР на составные полосы для образцов L5–L8

Таблица. Результаты анализа КР спектров образцов L5–L8				
ΔlgfO ₂ (IW) cm ⁻¹	-2.1	-2.3	-2.9	-3.3
3540-3570	OH⁻	OH⁻	OH⁻	-
3330	_	H ₂ O	H ₂ O	H ₂ O
3390	_	$\mathrm{NH_4}^+$	$\mathrm{NH_4}^+$	$\mathrm{NH_4}^+$
3320	$\mathrm{NH_4}^+$	$\mathrm{NH_4}^+$	$\mathrm{NH_4}^+$	$\mathrm{NH_4}^+$
3288	NH ₃	NH ₃	NH ₃	NH ₃
3185	NH ₃	NH ₃	NH ₃	NH ₃
2915	CH ₄	CH_4	_	-

Результаты анализа сведены в таблицу.

Работа выполнена при поддержке РФФИ грант № 11-05-00926, Программа П-24, ОНЗ-8.