Экспериментальное исследование состава фаз в области кристаллизации халькопиритового твердого раствора

Т. А. Кравченко¹, С. Н. Ненашева²

¹Институт геологии и минералогии *CO PAH*, ²Минералогический музей им. А.Е. Ферсмана РАН

<u>tanyuk@igm.nsc.ru</u>

Для определения особенностей формирования фазовых равновесий с халькопиритом CuFeS₂, кубанитом CuFe₂S₃, моихукитом Cu₉Fe₉S₁₆ и хейкокитом Cu₄Fe₅S₈ изучены составы продуктов кристаллизации халькопиритового твердого раствора. Установленные соотношения Cu/Fe тетрагонального халькопирита(1.03–0.67), кубического fcc кубанита (0.61–0.39) и кубического рс хейкокита (0.92–0.68) значительно отличаются от соответствующих формульных соотношений. Состав моихукита с Cu/Fe = 1.04-0.93 соответствуют линии равновесия борнит-моихукит-кубанит, которая разделяет области халькопиритовых и хейкокитовых фазовых ассоциаций.

Ключевые слова: система Cu–Fe–S, халькопиритовый твердый раствор, кристаллизация расплава

Ссылка: Кравченко, Т. А., С. Н. Ненашева (2012), Экспериментальное исследование состава фаз в области кристаллизации халькопиритового твердого раствора, *Вестник ОНЗ РАН, 4*, NZ9001, doi:10.2205/2012NZ_ASEMPG.

По составу к области кристаллизации халькопиритового твердого раствора относятся: халькопирит CuFeS₂, талнахит Cu₉Fe₈S₁₆, кубанит CuFe₂S₃, моихукит Cu₉Fe₉S₁₆ и хейкокит Cu₄Fe₅S₈. Все они характеризуются переменным составом, но границы изменения их состава не установлены. Это затрудняет определение особенностей формирования фазовых равновесий при кристаллизации Cu–Fe сульфидного расплава. В настоящей работе были дополнительно изучены и обобщены результаты многочисленных экспериментов по синтезу фазовых ассоциации центральной части системы Cu–Fe–S: 45–50 ат.% S, Cu/Fe = 1.44–0.25 [*Кравченко, Нигматулина, 2009, Кравченко. 2009, 2011*]. Это позволило уточнить составы продуктов кристаллизации халькопиритового твердого раствора (iss) и дополнить схему устойчивых при комнатной температуре фазовых соотношений центральной части системы Cu–Fe–S [*Кравченко, 2011*] равновесиями талнахит–моихукит и моихукит–хейкокит (рис.). Синтез проводился в вакуумированных кварцевых ампулах методом охлаждения расплава от 1150–1100 °C до комнатной температуры и последующего отжига при 800, 600 и 400 °C. Синтезированные образцы изучены методами оптической микроскопии, рентгенографии и микрозондового анализа.

Результаты представлены на рисунке и в таблице 1. Установленные соотношения Cu/Fe тетрагонального халькопирита, изокубанита (кубического fcc кубанита), талнахита, моихукита и кубического pc хейкокита отличаются от соответствующих формульных соотношений. В таблице 1 не представлена ассоциация изокубанит + пирротин Fe_{1-x}S (cb + po) с таким же составом изокубанита, как и в ассоциации изокубанит + хейкокит + пирротин (cb + hc + po), но с более сернистым пирротином и ассоциация халькопирт + изокубанит + пирротин (cp + cb + po) с изокубанитом и халькопиритом стехиометрического состава и обогащенным серой пирротином.

Изокубанит, халькопирит, талнахит. Изокубанит установлен в ассоциациях со всеми синтезированными продуктами кристаллизации iss. Как наиболее тугоплавкий, изокубанит кристаллизуется из расплава первым, и его состав определяет составы равновесных с ним фаз. Обогащенный медью изокубанит (Cu/Fe = 0.61–0.52) кристаллизуется в ассоциациях с халькопиритом или талнахитом в зависимости от режима охлаждения расплава в интервале 1000–800 °C. При охлаждении расплава с выдержкой при 850 °C в процессе охлаждения в ассоциации с изокубанитом кристаллизуется обогащенный железом халькопирит (Cu/Fe = 0.99–0.67), а без выдержки при 850°C — талнахит (Cu/Fe = 1.16–1.09) и менее железистый, но обогащенный медью халькопирит (Cu/Fe = 1.03–0.92). При быстром

охлаждении расплава с Cu/Fe = 1-0.67 от 850 °C до комнатной температуры в халькопиритах с Cu/Fe = 0.99-0.82: 25–22.5 ат.% Cu, 25–27.5 ат.% Fe, наблюдаются участки структуры распада с фазой состава максимально железистого халькопирита (Cu/Fe = 0.67: 20 ат.% Cu, 30 ат.% Fe).

Рис. Схема взаимоотношений синтезированных фаз (сплошные линии) на схеме центральной части системы Cu-Fe-S при 600 °C (штриховые линии, Cabri, 1973). • — Исходные составы синтезированных образцов: 50 ат.% S, Cu/Fe 1.22–0.25; 47 ат.% S, Cu/Fe 1.12–0.63; 45 ат.% S, Cu/Fe 1.44–0.69. iss, bnss и ро — области халькопиритового, борнитового и пирротинового твердых растворов. □ — Стехиометрические составы: халькопирита CuFeS₂ (cp), борнита Cu₅FeS₄ (bn), пирита FeS₂ (py), троилита FeS, талнахита Cu₉Fe₈S₁₆ (tal), кубанита CuFe₂S₃ (cb), моихукита Cu₉Fe₉S₁₆ (mh) и хейкокита Cu₄Fe₅S₈ (hc).

Состав фаз, ат.%					
Фазовая ассоциация	Фазы	мас.%			Cu/Fe
		Cu	Fe	S	
cb + cp	cb	17.34–19.32	31.75-33.13	48.93-49.53	0.61-0.52
		23.92-26.78	38.70-40.17	34.22-34.46	
	cp	20.31-25.54	25.81-30.47	48.65-49.81	0.99–0.67
		28.03-34.97	31.07-36.96	34.37-34.48	
cb + tal + cp	cp	24.22-25.43	24.71-26.42	49.36-49.86	1.03-0.92
tal + cp + bn		33.40-34.86	29.76-32.02	34.34–34.48	
cp + bn + py	tal	26.92-27.92	24.12-24.60	47.75–48.84	1.16-1.09
		36.64-37.68	28.75-29.13	32.74-33.42	
mh + bn	mh	25.64-27.38	26.37-27.52	46.25-47.15	1.04-0.93
		34.74-37.18	31.46-32.83	31.68-32.25	
po + cb + hc	cb	14.04-16.80	34.06-35.90	49.13-50.06	0.49-0.39
		19.59–23.34	41.57-44.03	34.42-35.25	
	hc	21.01-25.35	28.17-31.05	45.97–47.94	0.90-0.68
		30.65-34.34	33.74-36.17	31.43-32.91	
po + hc + bn	hc	21.61-25.75	27.91-31.98	46.41-47.25	0.92-0.68
		29.46-34.71	33.06-38.32	31.93-32.74	

Таблица	1.	Состав	синтези	рованных	фаз

сb — изокубанит CuFe₂S₃ (Cu/Fe = 0.5), ср — халькопирит CuFeS₂, (Cu/Fe = 1),

tal — талнахит $Cu_9Fe_8S_{16}$ (Cu/Fe = 1.12), mh — моихукит $Cu_9Fe_9S_{16}$ (Cu/Fe = 1), hc — кубический pc хейкокит $Cu_4Fe_5S_8$ (Cu/Fe = 0.8). Таким образом, Cu/Fe халькопирита изменяется в пределах 1.03–0.67. С увеличением скорости охлаждения расплава и уменьшением содержания серы область кристаллизации железистых халькопиритов уменьшается.

Фазовые соотношения, характерные для структур распада твердого раствора, установлены только для халькопирит-содержащих фазовых ассоциаций. Составы фаз и рентгенограммы смесей халькопирита с талнахитом и кубанитом свидетельствуют о том, что наблюдаемые структуры распада талнахит + халькопирита и изокубанит + халькопирит обусловлены фазовым переходом кубического iss в тетрагональный халькопирит. Полученные результаты подтверждают экспериментальные данные [Yund, Kullerud, 1966; Sugaki et. all, 1975 и др.] о переменном составе халькопирита. Состав синтезированного в данной работе максимально железистого халькопирита соответствует составу максимально железистого iss, установленного [Tsujmura, Kitakaze, 2004] по сечению 50 ат.% S системы Cu–Fe–S при 800 °C.

Моихукит. Состав моихукита с Cu/Fe = 1.04–0.93 соответствует линии равновесия борнит (bn) – моихукит (mh) – кубанит (cb), которая разделяет области халькопиритовых и хейкокитовых фазовых ассоциаций.

Кубический рс хейкокит. В отличие от природного ромбического хейкокита, синтетическая фаза хейкокитового состава характеризуется кубической рс структурой [*Cabri*, 1973]. Кубическая рс структура установлена для синтезированных в настоящей работе фаз состава: 46–48 ат.% S, Cu/Fe = 1–0.68. В ассоциации с пирротином и обогащенным железом изокубанитом (Cu/Fe = 0.49–0.39) кристаллизуется кубический рс хейкокит с Cu/Fe = 0.90–0.68, а в ассоциации с пирротином и борнитом — с Cu/Fe = 0.92–0.68. Как видно в таблице 1, суммарный интервал значений Cu/Fe для моихукита и хейкокита (1.04–0.68) близок интервалу Cu/Fe, установленому для халькопирита (1.03–0.67).

Составы синтезированных фаз согласуются с данными литературы о составах соответствующих природных минералов (табл. 2).

Форти	(Состав фаз, мас.%	Homovivi		
Фазы	Cu	Fe	S	источник	
Изокубанит	23.92-26.78	38.70-40.17	34.22-34.46	Настоящая работа, с ср,	
(cb)	19.59-23.34	41.57-44.03	34.42-35.25	c hc.	
	22.23	41.98	35.79	Missack et. al., 1989.	
	19.25-23.40	37.60-43.80	34.30-37.52	Мозгова и др., 1995, 2002.	
	18.10-24,94	34.46-41.73	34.20-36.70	Дистлер и др., 1996.	
Халькопирит	28.03-34.97	31.07-36.96	34.37-34.48	Настоящая работа, с cb,	
(cp)	33.40-34.86	29.76-32.02	34.34-34.48	с cb и c tal.	
	30.2-32.0	33.2-34.9	33.8-35.7	Карпенков, 1974.	
	26.54-31.37	31.98-36.56	33.74-35.66	Дистлер и др., 1996.	
	31.23-34.17	27.87-32.36	35.06-36.03	Фардуст и др., 2005,	
	32.63-33.21	31.42-31.85	34.98-35.64	ламели из структур распада.	
Изо-	33.1-35.3	31.4-32.4	33.2-34.1	Филимонова и др., 1974.	
халькопирит	34.04	32.20	33.87	Missack et. al., 1989.	
	31.69	34.51	33.85	Фардуст и др., 2005. Ламели	
	33.08	32.81	33.88	из структур распада (центр, край).	
Талнахит (tal)	36.64-37.68	28.75-29.13	32.74-33.42	Настоящая работа.	
	36.5-8.6	29.5-32.0	31.0-32.0	Будько, Кулагов, 1963.	
	36.86-37.36	28.79-29.47	33.06-33.84	Cabri, Hall, 1972.	
	36.8	29.8	34.0	Филимонова и др., 1974	
Моихукит (mh)	34.74-36.26	31.94-32.34	31.97-32.25	Настоящая работа.	
	34.87-36.71	31.38-32.40	31.93-33.29	Cabri, Hall, 1972.	
	35.3-36.2	31.4-31.9	32.1-32.9	Филимонова, 1974.	
Хейкокит	30.65-34.71	33.06-38.32	31.43-32.91	Настоящая работа.	
(hc)	31.83-32.55	34.64-35.46	31.94-32.86	Cabri, Hall 1972.	

Таблица 2. Состав синтезированных в данной работе и природных продуктов кристаллизации халькопиритового твердого раствора

КРАВЧЕНКО И ДР.: ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ СОСТАВА

Таким образом, формирование фазовых равновесий в изученной части системы Cu-Fe-S определяется исходным составом и скоростью охлаждения расплава. Из расплавов, содержащих 50 ат.% S, кристаллизуются: пирротин Fe_{1-x}S + обогащенный железом изокубанит (Cu/Fe = 0.49-0.39), изокубанит (Cu/Fe = 0.52-0.49), обогащенный медью изокубанит (Cu/Fe = 0.61-0.52) + обогащенный железом халькопирит (Cu/Fe = 0.99-0.67). При уменьшении содержания серы происходит изменение состава фазовых ассоциаций: пирротин + изокубанит \rightarrow пирротин + изокубанит + хейкокит (Cu/Fe = 0.90-0.68) = \rightarrow пирротин + хейкокит (Cu/Fe = 0.92-0.68) + борнит, изокубанит \rightarrow изокубанит + моихукит (Cu/Fe = 1.04-0.93) + борнит, изокубанит + халькопирит \rightarrow изокубанит + талнахит (Cu/Fe = 1.16-1.09) + халькопирит (Cu/Fe = 1.03-0.92).

Литература

Будько, И. А., Э. А. Кулагов (1963). Природный кубический халькопирит, Докл. АН СССР, т. 152, № 2.

Дистлер, В. В., Э. А. Кулагов, С. Ф. Служеникин, И. П. Лапутина (1996). Закаленные сульфидные твердые растворы в рудах Норильского месторождения, *Геология рудных месторождений*, т. 38, № 1, с. 41–53.

Карпенков, А. М., Г. А. Митенков, Н. С. Рудашевский (1974). Обогащенная железом разновидность халькопирита, *ЗВМО*, ч.103, вып. 1.

Кравченко, Т. А., Е. Н. Нигматулина (2009). Экспериментальное исследование поведения золота и серебра в процессе кристаллизации Си–Fe сульфидного расплава, *Новые данные о минералах*, М.: ЭКОСТ, вып. 44, сс. 56–65.

Кравченко, Т. А. (2009). Образование Pt-Pd-Sn металлидов в процессе кристаллизации Cu-Fe сульфидного расплава, *Новые данные о минералах*, М.: ЭКОСТ, вып. 44, сс. 66–73.

Кравченко, Т.А. (2011). Экспериментальное исследование продуктов кристаллизации халькопиритового твердого раствора, *Новые данные о минералах*, М.: ЭКОСТ, вып. 46, сс. 86–92.

Мозгова, Н. Н., С. Н. Ненашева, Ю. С. Бородаев, А. И. Цепин. (1995). Область состава и особенности изоморфизма изокубанита, *Геохимия*, № 4, сс. 533–551.

Мозгова, Н. Н., Ю. С. Бородаев, И. Ф. Габлина, Г. А. Черкашев, Т. В. Степанова, Е. А. Жирнов (2002). Изокубанит из сульфидных руд гидротермального поля Рейнбоу (Срединно-Антлантический хребет, 36°14 с.ш.), *ЗВМО*, № 5.

Фардуст, Ф., Н. Н. Мозгова, Ю. С. Бородаев, Н. И. Органова, Л. А. Левицкая (2005). Легко окисляющийся халькопирит из черных курильщиков гидротермального поля Рейнбоу, *Новые данные о минералах*, М.: ЭКОСТ, вып. 40.

Филимонова, А. А., И. В Муравьева, Т. Л. Евстигнеева (1974). Минералы группы халькопирита в медно-никелевых рудах норильских месторождений, *Геология рудных месторождений*, № 5, сс. 36–46.

Cabri, L. J., S. Hall (1972). Mooihoekite and haycockite, two new copper-iron sulfides, and their relationship to chalcopyrite and talnakhite, *Amer. Min.*, v. 57. pp. 5–6.

Cabri, L. J. (1973). New data on phase relations in the Cu-Fe-S System, *Economic Geology*, v. 68. pp. 443–454.

Missack, E., P. Stoffers, A. Goresy (1989). Mineralogy, parageneses and phase relations of copperiron sulfides in the Atlantis II deep, Red Sea, *Mineral Deposit*, v. 24, pp. 82–91.

Sugaki, A., H. Shima, A. Kitakaze, H. Harada (1975). Isothermal phase relations in the system Cu-Fe-S under hydrothermal conditions at 350 °C and 300 °C, *Economic Geology*, v. 70, pp. 806–823.

Tsujmura, T. A., A. Kitakaze (2004). New phase relations in the Cu-Fe-S system at 800°C; constraint of fractional crystallization of sulfide liquid, *N. Jb. Miner. Mh*, v. 10, pp. 433–444.

Yund, R. A., G. Kullerud (1966). Thermal stability of assemblages in the Cu-Fe-S system, *Jour. Petrol.*, v. 7, pp. 454–488.