О проблемах расчета растворимости оксидов металлов в паровой фазе воды

Н. Н. Акинфиев¹, А. В. Плясунов²

¹Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Москва ²Институт экспериментальной минералогии РАН, Черноголовка

akinfiev@igem.ru

В системах оксид металла—вода имеющиеся термодинамические данные для газофазных гидроксидов предсказывают величины растворимости в пару, которые на несколько порядков ниже экспериментальных определений. Предлагается подход к решению этой проблемы путем включения в квантовохимический расчет гидратированных форм газофазных гидроксидов.

Ключевые слова: растворимость, квантово-химические расчеты, термодинамические свойства, идеальный газ

Ссылка: Акинфиев, Н. Н., А. В. Плясунов (2012), О проблемах расчета растворимости оксидов металлов в паровой фазе воды, Вестник ОНЗ РАН, 4, NZ9001, doi:10.2205/2012NZ ASEMPG

Рядом исследователей на основании изучения газово-жидких включений, анализов конденсатов фумарольных газов и экспериментальных исследований показано, что паровая фаза гидротермального раствора способна переносить заметные количества металлоидов (B, Si, Ge, As, Sb, Те и др.) и даже металлов (Мо, Ag, Cu, Au). Имеющиеся в распоряжении геохимиков базы термодинамических данных не позволяют с достаточной точностью предсказывать поведение этих металлов в малоплотных флюидах. Таким образом, определение стехиометрии форм переноса элементов в паровой фазе и их термодинамических свойств является актуальной задачей современной геохимии гидротермальных процессов.

Анализ следует начинать с тех форм переноса, которые всегда существуют в присутствии воды, т.е. с оксидных и гидроксидных частиц. Для ряда металлоидов стехиометрия форм переноса определена спектроскопически – это гидроксиды (т.е. As(OH)₃, B(OH)₃, Si(OH)₄ и т.д.).

Термодинамика позволяет рассчитать величины растворимости оксидов в пару, если известны термодинамические свойства гидроксидов в состоянии идеального газа и их коэффициенты фугитивности как функции температуры и давления $\phi_2^{\infty}(T, P)$. Для реакции растворения $MeO(tr) + nH_2O(r) = MeO\cdot(H_2O)_n(r)$ при заданных T и P справедливо следующее выражение для константы равновесия:

$$\ln K^{\circ}(T) = \ln \frac{Y_2 \cdot (P/P^{\otimes})\phi_2^{\infty}}{(f_1)^n} - \frac{V(\text{MeO}_{TB}) \cdot (P-P^{\otimes})}{RT},$$

где Y_2 обозначает мольную долю металла в паровой фазе, f_1 — фугитивность чистой воды, ϕ_2^∞ — коэффициент фугитивности растворенной формы при бесконечном разбавлении в воде, V — мольный объем твердой фазы, P^\otimes =0.1 МПа — стандартное давление.

Величины K° могут быть рассчитаны из термохимической информации по соотношению $-RT \ln K^{\circ} = g_T (\text{MeO} \cdot (\text{H}_2\text{O})_n(g)) - g_T (\text{MeO}(\text{s})) - g_T (\text{H}_2\text{O}(\text{g}))$, где g_T — энергии Гиббса соединения при стандартном давлении. Заметим, что, как правило, термодинамические свойства гидроксидов в состоянии идеального газа неизвестны. Оценка коэффициентов фугитивности

АКИНФИЕВ И ПЛЯСУНОВ: О ПРОБЛЕМАХ РАСЧЕТА РАСТВОРИМОСТИ

растворенных гидроксидов в настоящей работе выполнена по уравнению, следующему из вириального уравнения состояния [*Prausnitz et al.*, 1999]:

$$\ln \phi_2^{\infty} = \frac{2B_{12}}{V_1} - \ln \frac{PV_1}{RT},$$

где B_{12} — второй смешанный вириальный коэффициент для газофазного взаимодействия гидроксид — вода, а V_1 — мольный объем чистой воды. В настоящей работе оценка B_{12} выполнена по соотношению $B_{12} \approx k \cdot B_{11}$, где B_{11} — второй вириальный коэффициент воды [Harvey and Lemmon, 2004] и k принято равным числу гидроксидных групп и атомов кислорода в молекуле растворенного оксида или гидроксида.

В качестве примера на рис. 1 показаны величины растворимости кварца в пару воды для ряда давлений, рассчитанные в предположении существования единственной формы $Si(OH)_4(\Gamma)$, в сравнении с имеющимися экспериментальные данными. Необходимые величины термодинамических свойств $Si(OH)_4(\Gamma)$ взяты по работе [*Plyasunov*, 2011]. Как видно, согласие эксперимента и расчета вполне удовлетворительное.

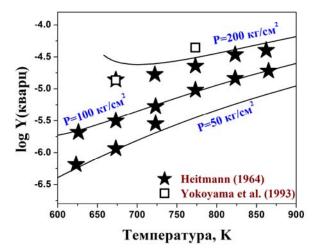
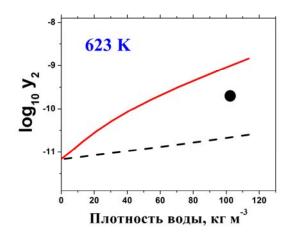



Рис. 1. Экспериментальные и расчетные величины растворимости кварца в пару воды

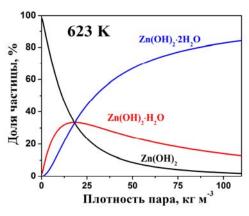
Рис. 2. Расчетные величины растворимости ZnO(кр) в пару воды при 623 К в сравнении с экспериментальным значением при 16 МПа [Bénézeth et al., 2002]. Штриховая линия показывает

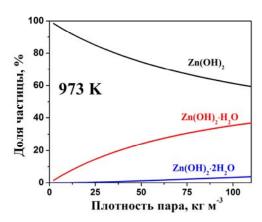
АКИНФИЕВ И ПЛЯСУНОВ: О ПРОБЛЕМАХ РАСЧЕТА РАСТВОРИМОСТИ

расчетные значения, полученные в предположении образования единственной формы $Zn(OH)_2(\Gamma)$, а сплошная линия отвечает расчету для случая образования в пару форм $Zn(OH)_2(\Gamma)$, $Zn(OH)_2 \cdot H_2O(\Gamma)$ и $Zn(OH)_2 \cdot (H_2O)_2(\Gamma)$

В то же время расчетная растворимость ZnO(тв) в пару воды при 623 К в предположении образования единственной формы $Zn(OH)_2(\Gamma)$, показанная штриховой линией на рис. 2, примерно на порядок ниже, чем экспериментальная величина при 16 МПа [Bénézeth et al., 2002].

Одна из возможных причин расхождения расчета и эксперимента состоит в том, что необходимо учитывать существование в паровой фазе кластеров типа $Me(OH)_n\cdot(H_2O)_m$. Таким образом, была поставлена задача расчета методами квантовой химии термодинамических свойств такого рода кластеров в состоянии идеального газа в широком диапазоне температур, и на этой основе оценке относительных констант устойчивости этих кластеров.


Квантовохимические расчеты проводились на основе функционала электронной плотности (DFT) с гибридным функционалом B3LYP и набором базовых волновых функций 6-311G+(d,p) для «легких» атомов (A < 79~ г моль⁻¹) и с использованием эффективного корового потенциала LANL2DZ для A > 79~ г моль⁻¹.


В результате расчетов получено термодинамическое описание ряда компонентов $Me(OH)_n \cdot (H_2O)_m$ в состоянии идеального газа, пригодное для широкого диапазона температур (273—1273 K).

Для системы $ZnO-H_2O$ такие расчеты выполнены для газообразных кластеров состава $Zn(OH)_2$, $Zn(OH)_2 \cdot H_2O$, $Zn(OH)_2 \cdot (H_2O)_2$ и $Zn(OH)_2 \cdot (H_2O)_4$. Для последовательных реакций гидратации гидроксида цинка в газовой фазе получены следующие величины констант равновесия при 623 К:

$$\begin{split} Zn(OH)_2(\Gamma) + H_2O(\Gamma) &= Zn(OH)_2 \cdot H_2O(\Gamma) & ln \ K_1 = -3.95 \\ Zn(OH)_2(\Gamma) + 2H_2O(\Gamma) &= Zn(OH)_2 \cdot (H_2O)_2(\Gamma) & ln \ K_2 = -7.92 \\ Zn(OH)_2(\Gamma) + 4H_2O(\Gamma) &= Zn(OH)_2 \cdot (H_2O)_4(\Gamma) & ln \ K_4 = -23.91 \end{split}$$

Распределение форм цинка в зависимости от плотности пара при 623 K показано на рис. 3 слева.

Рис. 3. Распределение форм цинка в пару воды при 623 К (слева) и 973 К (справа) в зависимости от плотности пара

Очевидно, что при 623 K негидратированный гидроксид преобладает только при весьма низких плотностях пара ρ_1 , при промежуточных значениях ρ_1 заметна доля моногидрата $Zn(OH)_2 \cdot H_2O$, а при плотностях воды более 25 кг м⁻³ абсолютно преобладает дигидрат $Zn(OH)_2 \cdot (H_2O)_2$. Вклад тетрагидрата незаметен при всех рассмотренных условиях. Учет всех форм заметно увеличивает расчетную растворимость $ZnO(\kappa p)$ в пару воды при 623 K (см. сплошную линию на рис. 2).

АКИНФИЕВ И ПЛЯСУНОВ: О ПРОБЛЕМАХ РАСЧЕТА РАСТВОРИМОСТИ

Согласно расчетам, распределение форм цинка в пару воды сильно зависит от температуры, причем с ростом температуры очевидна дегидратация молекул. Например, при увеличении температуры до 973 К преобладающей формой цинка становится безводный гидроксид во всем диапазоне плотностей пара H_2O , 0–100 кг м⁻³ (рис. 3 справа).

Заключение

Анализ процессов переноса компонентов в газовой фазе требует знания стехиометрии форм переноса и их термодинамических свойств.

Методы квантовой химии позволяют рассчитать термохимические свойства различных форм типа $Me(OH)_n \cdot (H_2O)_m$ в состоянии идеального газа и оценить их относительную устойчивость.

Применение этих методов к системам Me–O–H показало, что в газовой фазе стабильны не только гидроксиды, но и гидраты гидроксидов, причем во многих случаях вклад гидратов является преобладающим.

Учет всех форм металлов многократно увеличивает расчетную растворимость соединений в паровой фазе, часто улучшая согласие экспериментальных и расчетных величин.

Работа выполнена при поддержке грантов РФФИ 11-05-00786-а и 12-05-93107-НЦНИЛ a.

Литература

Bénézeth, P., D.A. Palmer, D.J. Wesolowski, C. Xiao (2002). New measurements of the solubility of zinc oxide from 150 to 350°C, *J. Solut. Chem.*, 31, 947–973.

Harvey, A. H., E. W. Lemmon (2004). Correlation for the second virial coefficient of water, *J. Phys. Chem. Ref. Data*, 33, 369–376.

Heitmann, H. G. (1964). Solubility of silicic acid in water and steam and its effect on silica deposits in turbines (in German), *Chemiker-Zeitung*, 88, 891–893.

Plyasunov, A.V. (2011). Thermodynamic properties of H₄SiO₄ in the ideal gas state as evaluated from experimental data, *Geochim. Cosmochim. Acta*, 75, 3853–3865.

Prausnitz, J. M., R. N. Lichtenthaler, E. G. de Avezedo (1999). Molecular Thermodynamics of Fluid-Phase Equilibria, *3rd Edition, Prentice-Hall*, New York, 860 p.

Yokoyama, C., A. Iwabuchi, S. Takahashi, K. Takeuchi K. (1993). Solubility of PbO in supercritical water, *Fluid Phase Equil.*, 82, 323–331.