Исследование закономерностей тепло-массопереноса и определение массового потока пара в рециркуляционных кристаллизаторах

Т. М. Бубликова, Т. В. Сеткова, В. С. Балицкий Институт экспериментальной минералогии РАН, Черноголовка

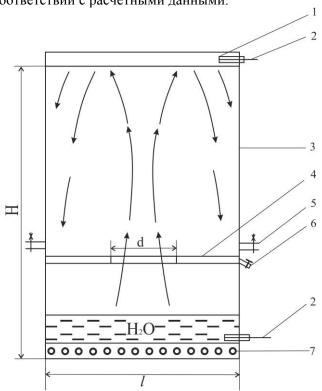
tmb@iem.ac.ru

На основе экспериментальных и теоретических данных по тепло-массопереносу разработана конструкция кристаллизатора рециркуляционного типа с перспективой выращивания в нем малахита, азурита и других соединений.

Ключевые слова: кристаллизатор рециркуляционного типа, тепло-массоперенос, синтез минералов

Ссылка: Бубликова, Т.М., Т.В. Сеткова, В.С. Балицкий (2012), Исследование закономерностей тепло-массопереноса и определение массового потока пара в рециркуляционных кристаллизаторах, *Вестник ОНЗ РАН, 4*, NZ9001, doi:10.2205/2012NZ ASEMPG.

Исследование закономерностей процессов тепло- и массопереноса в кристаллизаторах закрытого типа (оригинальная конструкция ИЭМ РАН) проводилось в рамках работ по синтезу плотных агрегатов основного карбоната меди [Балицкий и др., 1987; Бубликова и др., 2000; Балицкий и др., 2009]. Кристаллизаторы подобного типа используются для выращивания кристаллов соединений, характеризующихся обратным температурным коэффициентом растворимости (ТКР). Наиболее приемлемыми для осуществления процесса синтеза малахита в закрытой системе являются кристаллизаторы, в которых летучий растворитель совершает многократную рециркуляцию через фазы: жидкость—пар—жидкость (растворение шихты)—жидкость (кристаллизация малахита)—пар, и т.д.


Для оценки характеристических параметров и понимания процессов тепло- и массообмена (ТМО) были осуществлены теоретические расчеты и определены экспериментально массовые потоки пара в процессе, моделирующем процесс синтеза малахита с участием в качестве растворителя чистой воды при температурах до 100°С.

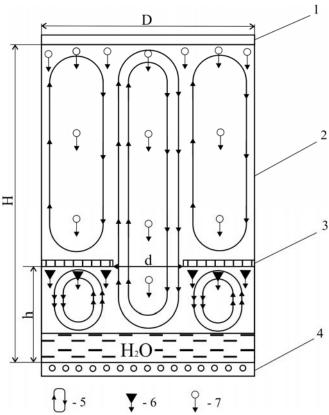
Отвод тепла от конденсатора осуществлялся потоком проточной воды, подвод тепла к кристаллизации – электронагревателем. В стационарных условиях процесс характеризуется постоянными значениями температур в различных точках по высоте аппарата и постоянством циркуляции воды в тепловом контуре. В связи с тем, что внутри аппарата теплообмен обусловлен несколькими процессами, был оценен количественный вклад каждого из них. Теплоперенос в кристаллизаторе между горячей (80°C) нижней и холодной (20°C) верхней зонами осуществляется: а) свободной конвекцией парогазовой смеси; б) конденсацией конвектирующего пара из смеси; в) лучистой радиацией. Упрощенные расчеты [Кутателадзе, 1958] параметров тепло-массообмена показали, что основной вклад в теплоперенос вносит конденсация конвектирующего пара: $\alpha_{\text{конд.}} = 4.8 \cdot 10^{-3} \text{ ккал/м·c·°C}$, $\alpha_{\text{конв.}} = 8.4 \cdot 10^{-4} \text{ ккал/м·c·°C}$, $\alpha_{\text{луч.}}$ $\alpha_{\text{конд}} + \alpha_{\text{конв}}$. Расчетная величина массового может составлять 15-20% ОТ конденсирующегося пара m_n составила $0.54 \cdot 10^{-3}$ кг/м²сек.

Одновременно с расчетами проведено экспериментальное определение массового потока пара в кристаллизаторе при тех же термобарических параметрах. Эксперименты осуществлялись в лабораторном кристаллизаторе с рабочим объемом $6.8 \cdot 10^{-3} \text{ м}^3$ (рис.1). Кристаллизатор представляет собой сборную конструкцию, состоящую из двух камер квадратного сечения, герметично соединяющихся с помощью фланцевого соединения. В верхней крышке кристаллизатора вмонтирован водяной конденсатор. Кристаллизатор на высоте h=80 мм от днища разделен горизонтальной перегородкой, которая имеет центральное отверстие квадратного сечения для выхода пара. Перегородка выполняет функцию пробоотборника. Кристаллизатор до уровня 0.02 м заливался водой, герметично закрывался и устанавливался на электропечь. Температура дна поддерживалась постоянной и составляла

БУБЛИКОВА И ДР.: ИССЛЕДОВАНИЕ ЗАКОНОМЕРНОСТЕЙ

 $80\pm1^{\circ}$ С, температура верхней крышки — $20\pm1^{\circ}$ С. В результате непрерывного процесса испарения воды в горячей зоне и конденсации пара на холодильнике часть конденсата попадала в пробоотборник. Через определенные промежутки времени конденсат сливали и замеряли его объем. Продолжительность опытов составляла 15, 30, 45, 60 минут. Площадь пробоотборника была равна $0.02~\text{m}^2$. Результаты опытов приведены в таблице 1., и, как видно, находятся в удовлетворительном соответствии с расчетными данными.

Рис. 1. Схема проведения опытов по определению величины массового потока пара в лабораторном кристаллизаторе: 1 — конденсатор, 2 — термопары, 3 — корпус кристаллизатора, 4 — пробоотборник, 5 — фланцы, 6 — сливной кран, 7 — электронагреватель


Таблица 1. Условия и результаты опытов по определению величины массового потока

пара (m_n) в лабораторном кристаллизаторе

№ п/п	Время опыта, мин.	Т горячей зоны, °С	Т холодной зоны, °С	Объем воды в пробоотборнике, мл	Массовый поток m_n эксп., кг/м ² сек
1	15	80	20	27	1.5·10 ⁻³
2	15	80	20	24	1.33·10 ⁻³
3	15	81	20	30	1.67·10 ⁻³
4	30	80	20.5	47	1.31·10 ⁻³
5	30	80	20	51	1.42·10 ⁻³
6	30	80	20	48	1.33·10 ⁻³
7	45	80	20	75	1.39·10 ⁻³
8	45	80	20	75	1.39·10 ⁻³
9	45	80	19.5	77	1.43·10 ⁻³
10	60	81	20	108	1.5·10 ⁻³
11	60	81	20.5	105	1.46·10 ⁻³
12	60	80	20	99	1.38·10 ⁻³

Аналогичный подход был использован также для оценки влияния на параметры тепломассообмена вариации высоты размещения шихтовой корзины и диаметра центрального отверстия, сквозь которое осуществляется перенос пара. Схема процесса показана на рис. 2. В отличие от аппарата, рассмотренного на рис. 1, в данном кристаллизаторе установлена корзина с шихтой $Cu_2(OH)_2CO_3$, в качестве растворителя используется водный аммиачный раствор. Влияние на процесс величины отверстия в корзине связано с тем, что сужение этого отверстия влечет за собой уменьшение свободно-конвективного теплообмена и, как следствие, уменьшение интенсивности подвода конденсата к шихте вплоть до практически полной остановки процесса.

Влияние высоты расположения шихтовой корзины над днищем кристаллизатора (h) на динамику процесса обусловлено тем, что, изменяя координату h вертикального размещения шихтовой корзины, представляется возможным направленно изменять температуру раствора, просачивающегося сквозь шихту, и концентрацию в нем растворенных компонентов.

Рис. 2. Схема тепло-массообмена в кристаллизаторе: 1 – корпус кристаллизатора, 2 – конденсатор, 3 – корзина для шихты, 4 – электронагреватель, 5 – свободно-конвективные ячейки ,6 – капли конденсата, 7 – капли раствора, образовавшиеся в корзине с шихтой

Высота расположения корзины в аппарате определяется двумя противоречивыми требованиями. Температура в корзине должна быть достаточно низка, чтобы избыток концентрации соли в растворе, поступающем в горячую нижнюю зону аппарата, был достаточным по сравнению с равновесной концентрацией, для максимальной скорости роста кристаллов минералов (что обеспечивается перепадом температур 25–45°С между дном и шихтовой корзиной). С другой стороны, эта температура должна быть выше некоторой критической величины, при которой пересыщение при поступлении раствора в донную часть оказывается недопустимо большим, приводящим к аномально высоким скоростям роста (гомогенная нуклеация, массовая кристаллизация и т.п.). Исходя из описанных выше расчетов и экспериментов, оптимальная высота расположения шихтовой корзины отвечает значениям h/H=0.25–0.8.

БУБЛИКОВА И ДР.: ИССЛЕДОВАНИЕ ЗАКОНОМЕРНОСТЕЙ

Экспериментальные и теоретические данные по тепло-массопереносу полученные в работе, были использованы в разработке конструкции кристаллизатора рециркуляционного типа для синтеза в нем малахита, азурита и других соединений.

Литература

Балицкий, В.С., Т.М. Бубликова, С.Л. Сорокина, Л.В. Балицкая, А.С. Штейнберг (1987). Синтетический ювелирно-поделочный малахит, *ДАН СССР*, 297, №1, сс. 184—186.

Балицкий, В.С., Т.М. Бубликова, Ю.Б. Шаповалов (2009). Синтетический поделочный малахит – перспективный облицовочный материал строительной индустрии, *Вестник БГТУ им. В.Г. Шухова*, 3, сс. 4–11.

Бубликова, Т.М., В.С. Балицкий, И.В. Тимохина (2000). Синтез и основные свойства ювелирно-поделочного малахита. *Синтез минералов 1 том*. Александров ВНИИСИМС, сс.502—532.

Кутателадзе, С.С., В.М. Боришанский (1958). *Справочник по теплопередаче*. Москва. Гос. энергетическое издательство. с.414.