О кремнеземистом геле, образующемся при разложении эвдиалитового концентрата

В. А. Зайцев, А. Н. Груздева, Н. П. Старшинова, Р. Х. Хамизов, Л. Н. Когарко Институт геохимии и аналитической химии им. В.И. Вернадского РАН

alkaline@geokhi.ru

Исследован кремнеземистый гель, получаемый при кислотном разложении эвдиалита и нефелина. Изучены ионообменные свойства геля, обнаружен слабо-селективный характер сорбции металлов. Аналогичные гели образуются в качестве промежуточных продуктов различных природных процессах и фиксируются новообразованиями опала, иногда — содержащего заметные концентрации примесных элементов. Можно предположить, что в случае выпадения кремнеземистых гелей на пути миграции низкотемпературных растворов их сорбционные свойства могут быть эффективным механизмом локальной дифференциации компонентов.

Ключевые слова: эксперимент, кислотное разложение эвдиалита, гелеобразный кремнезем, сорбция

Ссылка: Зайцев, В. А., А. Н. Груздева, Н. П. Старшинова, Р. Х. Хамизов, Л. Н. Когарко (2012), О кремнеземистом геле, образующемся при разложении эвдиалитового концентрата, *Вестник ОНЗ РАН, 4*, NZ9001, doi:10.2205/2012NZ ASEMPG.

Для разработки методики извлечения редких и редкоземельных элементов из эвдиалитового концентра были выполнены эксперименты по переводу редких элементов в раствор соляной и азотной кислотами с целью выбора оптимальных параметров получения раствора для дальнейших экспериментов по разделению редких элементов.

Исходным материалом служила проба эвдиалитового концентрата, полученная Ловозерским ГОК при опытном обогащении лопарит-эвдиалитовой руды с карьера на г. Аллуайв. Минеральный состав концентрата 71.7% эвдиалита, 12.3% эгирина, 8.9% нефелина, 2.4% полевого шпата, 0.4% лопарита, 4.41% лампрофиллита и рамзаита.

В ходе эксперимента навеска эвдиалитого концентрата заливалась кислотой, выдерживалась в течении суток, после чего кислота отфильтровывалась, и осадок промывался дистиллированной водой.

Состав полученных фильтратов исследовался методами ICP-MS и ICP-AS (ГЕОХИ РАН).

В ходе кислотного разложения нефелина и эвдиалита кремнезем выделяется в виде геля, остающегося на фильтре. В рентгеновских спектрах осадков после обработки 10%, 20% и 30% кислотами линии нефелина и эвдиалита не сохраняются, наблюдаются линии арфведсонита, эгирина, полевых шпатов и лопарита.

С уменьшением концентрации кислоты, использованной для разложения от 3 до 30%, содержание воды в получаемом геле изменяется от 75 до 90 %.

Гель захватывает большую часть одно- двух и трехалентных катионов эвдиалита и нефелина. Они вымываются из него дистиллированной водой. Концентрации металлов в промывающей жидкости описываются экспоненциальной зависимостью вида C=Co*B*exp(A*V), где C- концентрация в данной порции промывочной жидкости, V- общий объем жидкости, протекшей через фильтр, A и B- эмпирические коэффициенты. Это свидетельствует о сорбционном характере их нахождения.

Отношение Y/La в начальных порциях растворов составляет 2.11-2.19, а в поздних достигает 2.71 отношение Ce/La в ранних стадиях 2.56-2.66, а в поздних 2.77–5.23. Отношение Zr/Y в ранних порциях составляет 14-18.3, а в поздних от 16 до 41. Причем гель, селективный относительно Zr/Y не демонстрирует селективности относительно редкоземельных элементов.

Отношение Zr/Ti изменяется от 11.2–13.1 до 5–7, причем в промежуточных порциях достигает 2.2–3.5. Закономерное изменение отношений концентраций металлов от ранних порций промывки к поздним свидетельствует о селективности сорбции. Селективность сорбента существенно различается от опыта к опыту.

ЗАЙЦЕВ И ДР.: О КРЕМНЕЗЕМИСТОМ ГЕЛЕ

Кремнеземистые гели образуются в качестве промежуточных субстанций в разнообразных геологических обстановках, и фиксируются новообразованиями опала в том числе в ультраагпаитовых породах и пегматитах. Например, в Ловозерском массиве отмечались опалы, содержащие заметные концентрации натрия, алюминия, циркония и др. [Пеков, 2001], а в Йелустонском парке – опалы, с постоянными примесями Na и Cl, и спорадически – Zn, Ca, Hg [Channing, 2007].

Можно предположить, что в природе в случае выпадения кремнеземистых гелей на пути миграции низкотемпературных растворов их сорбционные свойства могут быть эффективным механизмом локальной дифференциации компонентов.

Работа выполнена при поддержке гранта Российского Фонда Фундаментальных исследований.

Литература

Пеков, И. В. (2001). Ловозерский массив: история исследования, пегматиты, минералы, *Творческое объединение "Земля" Ассоциации Экост*, М., 464 с.

Channing, A., I. B. Butler (2007). Cryogenic opal-A deposition from Yellowstone hot springs, *Earth and Planetary Science Letters*, vol. 257, iss. 1–2, pp. 121–131.