### Гидравлический радиус и мольная поверхность флюида в породах земной коры

В.М. Витовтова<sup>1</sup>, В.М. Шмонов<sup>1</sup>, А.В. Жариков<sup>2</sup>

<sup>1</sup>Институт экспериментальной минералогии РАН, Черноголовка.

<sup>2</sup>Институт геологии рудных месторождений минералогии, петрографии и геохимии РАН, Москва

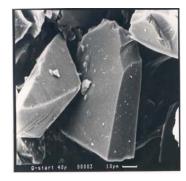
### vitovt@iem.ac.ru; shmslava@yandex.ru

На базе экспериментальных и теоретических данных установлено, что заметный эффект свободной поверхностной энергии (СПЭ) 2-4 кдж/моль при взаимодействии алюмосиликат — вода при гидротермальных условиях можно ожидать в микротрещинах размером меньше  $70 \div 20$  нм, что соответствует значениям гидравлического радиуса  $8 \times 10^{-9}$  -  $3 \times 10^{-8}$  м и меньше.

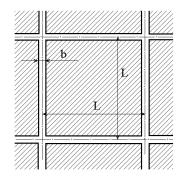
Ключевые слова: поверхность, свободная поверхностная энергия, нанопоры.

Ссылка: Витовтова В.М., В.М. Шмонов, А.В. Жариков (2012), Гидравлический радиус и мольная поверхность флюида в породах земной коры, Вестник ОНЗ РАН, 4, NZ9001, doi:10.2205/2012NZ ASEMPG.

Структурные характеристики горных пород определяют динамику движения сквозькоровых флюидов, а также вклад поверхностной энергии в термодинамические свойства флюидов в нанопорах. Влияние фазового размерного эффекта на изменение свойств веществ хорошо известен. Со стороны твердой фазы уменьшение размера частиц приводит к снижению температуры их плавления, снижению температуры образования фаз в растворах [Таусон и Абрамович, 1985], снижению температур образования твердых растворов [Акимов, 2007]. Со стороны флюидной фазы диспергирование ее нанопорами и микротрещинами приводит к изменению состава сосуществующих фаз [Шмонов и др., 1984; Шмулович и Шмонов, 1985], повышению плотности [Белоножко и Шмулович, 1990], нуклеации и формированию рудных образований из растворов [Пэк и др., 2011].


Природные флюиды находятся в микротрещинах, капиллярах и порах горных пород минимальные размеры которых могут достигать десятков и единиц нанометров. При изотермо - изобарических условиях вклад свободной энергии флюидной фазы

$$\Delta G_f = \sigma \Delta a \tag{1}$$


где  $\sigma$  - свободная поверхностная энергия (СПЭ) поверхности раздела фаз, (дж/м²), а  $\Delta a$  есть мольная поверхность флюида, (м²/моль). Чтобы определить вклад свободной энергии на состояние равновесия системы необходимы данные по свободной поверхностной энергии и мольной поверхности флюида.

Ранее нами были экспериментально определены значения свободной поверхностной энергии,  $\sigma$ , в системе кварц — вода для гидротермальных условий по разности в растворимостях кварцевого порошка размером 1 мкм (рис.1а) и 40 мкм (рис.1б) в воде [Лакштанов и др., 1992]. При давлении 50 МПа  $\sigma$  равна 0.44, 0.49 и 0.98 дж/м² при 300, 400 и 500°C соответственно; при давлении 100 МПа  $\sigma$  равна 0.50, 0.45 и 0.72 дж/м² при 400, 500 и 600°C соответственно.





Б



A

Рис.1

Рис.2

# ВИТОВТОВА И ДР.: ГИДРАВЛИЧЕСКИЙ РАДИУС И МОЛЬНАЯ

Мольная поверхность флюидной фазы для гидротермальных условий была рассчитана из PVT данных воды и поверхности пор модели породы состоящей из кристаллов кубической формы с гранью (L-b) и отстоящих друг от друга на расстоянии b (рис.2).

Мольная поверхность флюидной фазы, a, определяется как отношение площади поверхности пор,  $A_{\varphi}$ , к числу молей флюида, N, в объеме пор горной породы,  $V_{\varphi}$ , т.е.

$$a = A_{\omega}/N. \tag{2}$$

Количество флюида в порах породы при определенных p и T равно

$$N = V_{\wp} / v_{p,T} \tag{3}$$

где  $v_{p,T}$  - мольный объем флюидной фазы. Подставляя (3) в (2) получим

$$a_{p,T} = v_{p,T} \left( A_{\varphi} / V_{\varphi} \right) \tag{4}$$

В гидродинамике отношение объема пор к смоченной поверхности называется гидравлическим радиусом, Rh. Так как мы рассматриваем надкритический гомогенный гидротермальный флюид, который обеспечивает полное смачивание поверхности пор, то гидравлический радиус будет равен отношению объема пор к их поверхности,  $Rh = V_{\phi}/A_{\phi}$ . Тогда мольная поверхность может быть определена как отношение мольного объема флюида из PVT данных к гидравлическому радиусу

$$a_{p,T} = v_{p,T} / Rh \tag{5}$$

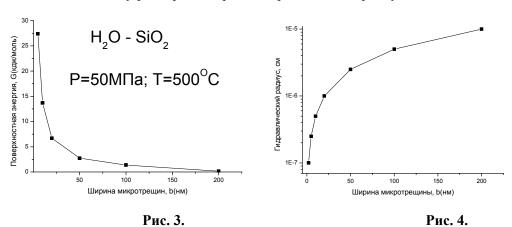
Хорошо известно, что по мере того как размер зерна уменьшается поверхность контакта, A, между раствором и минералами возрастает. Вместе с тем, уменьшение гранулярности при постоянном размере микропор, b, с точностью до бесконечно малых, приводит к пропорциональному возрастанию объема пор. Отсюда следует, что при одних и тех же pT условиях количество флюида возрастает в то же самое число раз. Поэтому при размерах кристаллов (L-b) в диапазоне 0.001 мм - 10 мм гидравлический радиус и мольная поверхность флюида остаются практически постоянными. Ниже приводятся табл.1 и табл.2, которые иллюстрируют этот вывод. Важно заметить, что значение  $\Delta G_f$  флюида не зависит от размера зерна модели пород, а определяется размером микротрещин (См: табл.№1  $\Delta G_f$  = 2740 дж/моль при размере микротрещин 50 нм и табл.№2  $\Delta G_f$  = 6850 дж/моль при размере микротрещин 20 нм).

**Таблица 1.** Свободная поверхностная энергия в системе  $H_2O\text{-Si}O_2$  для модели образца горной породы размером  $50\times50\times50$  мм и с размером пор b=50 нм ( $T=500^{\circ}C$ ; P=50 МПа;  $\sigma=0.98$  дж/м<sup>2</sup>)

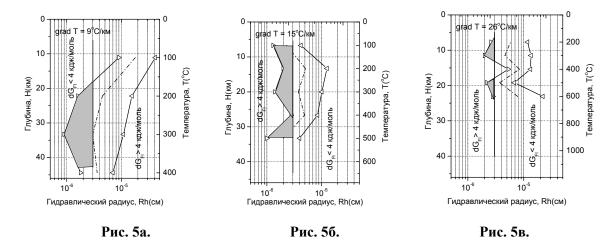
| Размер | Поверхность     | Объем пор,      | Гидравличес | Кол-во H <sub>2</sub> O | Мольная                                |                                  |
|--------|-----------------|-----------------|-------------|-------------------------|----------------------------------------|----------------------------------|
| зерна, | пор, A          | V               | кий радиус, | в порах, $N$            | поверхность,                           | $\Delta G_f = \sigma \Delta a$ , |
| MM     | cm <sup>2</sup> | cm <sup>3</sup> | Rh, см      | МОЛЬ                    | $\Delta a \text{ cm}^2 / \text{ моль}$ | дж/моль                          |
| 0,001  | 6768615         | 17,828          | 2.634E-6    | 0,254937                | 2,655E+07                              | 2602                             |
| 0,01   | 742370          | 1,8652          | 2.513E-6    | 0,026673                | 2,783E+07                              | 2728                             |
| 0,1    | 74775           | 0,1870          | 2.501E-6    | 0,002675                | 2,796E+07                              | 2734                             |
| 1      | 7349            | 0,0184          | 2.500E-6    | 0,000263                | 2,797E+07                              | 2741                             |
| 10     | 600             | 0,0015          | 2.500E-6    | 2,14E-05                | 2,797E+07                              | 2741                             |

**Таблица 2.** Свободная поверхностная энергия в системе  $H_2O\text{-Si}O_2$  для модели образца горной породы размером  $50\times50\times50$  мм и с размером пор b=20 нм ( $T=500^{\circ}C$ ; P=50 МПа;  $\sigma=0.98$  дж/м<sup>2</sup>)

| Размер | Поверхность     | Объем пор,      | Гидравличес | Кол-во Н <sub>2</sub> О | Мольная                                | $\Delta G_f = \sigma \Delta a$ , |
|--------|-----------------|-----------------|-------------|-------------------------|----------------------------------------|----------------------------------|
| зерна, | пор, A          | V               | кий радиус, | в порах, $N$            | поверхность,                           | дж/моль                          |
| MM     | cm <sup>2</sup> | cm <sup>3</sup> | Rh, см      | МОЛЬ                    | $\Delta a \text{ cm}^2 / \text{ моль}$ |                                  |
| 0,001  | 7202856         | 7,351           | 1.021E-6    | 0,105117                | 6,852E+07                              | 6715                             |
| 0,01   | 746854          | 0,7484          | 1.002E-6    | 0,010701                | 6,979E+07                              | 6839                             |
| 0,1    | 74820           | 0,0748          | 1.000E-6    | 0,00107                 | 6,992E+07                              | 6852                             |
| 1      | 7350            | 0,0074          | 1.000E-6    | 0,000105                | 6,993E+07                              | 6853                             |
| 10     | 600             | 0,0006          | 1.000E-6    | 8,58E-06                | 6,993E+07                              | 6853                             |


# ВИТОВТОВА И ДР.: ГИДРАВЛИЧЕСКИЙ РАДИУС И МОЛЬНАЯ

Ниже, в табл.3 приводятся значения  $\Delta G_f = \sigma \Delta a$  для экспериментальных условий и различных размеров микротрещин.


| Таблица 3. Свободная поверхностная энергия | (дж/моль | ) в системе $H_2O-SiO_2$ . |
|--------------------------------------------|----------|----------------------------|
|--------------------------------------------|----------|----------------------------|

| Температура | 300°C | 400°C | 500°C  | 600°C | Температура |
|-------------|-------|-------|--------|-------|-------------|
| Давление    |       |       |        |       | Размер щели |
|             | 20.46 | 30.62 | 137.06 | -     | 1 мкм       |
| 50 МПа      | 204.6 | 306.2 | 1370.6 | -     | 100 нм      |
|             | 2046  | 3062  | 13706  | -     | 10 нм       |
|             | 20460 | 30620 | 137060 | -     | 1 нм        |
|             | -     | 26.31 | 31.03  | 68.57 | 1 мкм       |
| 100 МПа     | -     | 263.1 | 310.3  | 685.7 | 100 нм      |
|             | -     | 2631  | 3103   | 6857  | 10 нм       |
|             | -     | 26310 | 31030  | 68570 | 1 нм        |

В качестве иллюстрации на рис.3 приведен график зависимости свободной поверхностной энергии в системе кварц — вода для размера пор щелевидной формы от 5 до 200 нм. На рис.4 показана взаимосвязь между размерами пор b и гидравлическим радиусом Rh.



Вклад СПЭ в микротрещинах 200 нм (0.2 мкм) или при  $Rh = 1 \times 10^{-5}$  незначителен. СПЭ флюида, диспергированного микротрещинами, становиться значимой ( $\sim 4.184$  кдж/моль) при размерах микротрещин только около 50 нм.



В условиях земной коры контакт гидротермальных растворов с породами осуществляется по весьма развитой поверхности, поэтому характер взаимодействия раствор — порода может в значительной степени определяться свойствами раздела фаз. Приминительно к природным системам рассмотрим зависимость гидравлического радиуса (Rh) от глубины (H) в

## ВИТОВТОВА И ДР.: ГИДРАВЛИЧЕСКИЙ РАДИУС И МОЛЬНАЯ

континентальной земной коре. Ранее нами были построены тренды значений Rh = f(H) для трех значений термоградиентов (Рис. 5а, 5б и 5в). На рисунках проведены границы раздела между областями где  $\Delta G_f = 4$  кдж/моль. Заметный эффект (2-4 кдж/моль) при взаимодействии кварц — вода при температурах  $300-600^{\circ}$ С и давлениях 50 и 100 МПа можно ожидать в микротрещинах размером только меньше  $70 \div 20$  нм, что соответствует значениям гидравлического радиуса  $8 \times 10^{-7}$  -  $3 \times 10^{-6}$  см и меньше. На рисунках 5а, 5б и 5в область высоких значений СПЭ лежит слева от линии  $3 \times 10^{-6}$  см и закрашена темным. Вероятно в ряде случаев учет вклада поверхностной энергии на смещение параметров равновесия необходим.

#### Заключение

- 1. Свободная поверхностная энергия системы кварц вода при гидротермальных условиях ( $300\text{-}600^{\circ}\text{C}$  и 50 МПа и 100 МПа) находится в интервале 0.4-1.0 дж/м<sup>2</sup>.
- 2. Значение  $\Delta G_f$  флюида для пород с характерным размерам зерна от 1 микрона и до 1 см практически постоянно и определяется только размером микротрещин, в которых находится флюид.
- 3.Принимая во внимание экспериментальные данные по  $\sigma$  кварца (300-600°C, 50 и 100 МПа) [Лакштанов и др., 1992] и теоретические [Lasaga & Blum, 1986] для пироксенов, плагиоклазов, оливинов и калиевых полевых шпатов (0.35 0.5 дж/м² при стандартных условиях) можно заключить, что поверхностная энергия алюмосиликатов при гидротермальных условиях будут того же самого порядка, что и в системе кварц вода.
- 4. Заметный эффект (2 4 кдж/моль) при взаимодействии кварц вода можно ожидать в микротрещинах 20-70 нм ( $Rh=8\times10^{-7}\div3\times10^{-6}$  см) и меньше.

Работа выполнена при финансовой поддержке РФФИ (грант 11-05-00778), Программы 4 Президиума РАН, а также Программам 2 и 8 ОНЗ РАН.

#### Литература.

Акимов, В.В. (2007). Физико-химический анализ структурно-несовершенных кристаллов: общая концепция, моделирование, приложения, *Автореферат дисс. уч. степени доктора химических наук*, Иркутск – 2007, 42 с.

Белоножко, А.Б., К.И. Шмулович (1986). Исследование плотного флюида в микропорах методом молекулярной динамики, *Геохимия*, №11, с. 1523 – 1534.

Лакштанов, Л.З., В.М. Шмонов, Т.П. Дадзе, А. Ван дер Эрден, Б. Янсен (1994). Свободная поверхностная энергия системы кварц – вода при высоких температурах и давлениях, Геохимия, №10, с. 1479 – 1488.

Пэк, А.А., В.И. Мальковский, О.Г. Сафонов (2011). Гипотеза микроструктурного контроля отложения тонковкрапленной золоторудной минерализации в черносланцевых толщах, *Геология рудных месторождений*, т.53, №3, С. 250-266.

Таусон, В.Л., М.Г. Абрамович (1985). К теории фазового размерного эффекта и его наблюдению в сульфиде ртути, *Геохимия*, №11, с. 1602 – 1613.

Шмонов, В.М., З.Н. Вострокнутова, В.М. Витовтова (1984). О возможном влиянии адсорбции на концентрацию флюида в порах и газово-жидких включениях, *Очерки физико-химической петрологии*, М.: Наука, Вып.12, С.78-87.

Шмулович К.И., В.М. Шмонов (1985). Флюидная фаза при высоких давлениях., *I Советско – японский симпозиум по фазовым превращениям при высоких давлениях и температурах*, Листвянка-на –Байкале, 3-13 сент, Докл. Б. м., 1985.-С.117-129.

Lasaga A.C., A.E. Blum (1986). Surface chemistry, etch pits and mineral-water reactions, *Geochimica et Cosmochimica Acta*, Vol. 50, pp. 2363-2379.