ВЕСТНИК ОНЗ РАН, ТОМ 2, NZ6022, doi:10.2205/2010NZ000040, 2010

К вопросу о происхождении палласитов

3. А. Лаврентьева, А. Ю. Люль, Г. М. Колесов Институт геохимии и аналитической химии им. В. И. Вернадского РАН (ГЕОХИ РАН)

Получено 31 марта 2010; опубликовано 5 июня 2010.

В данной работе представлены результаты определения химических элементов в оливине, металле, тридимите, троилите, добреелите и 4 фрагментах из палласита Омолон. Выделено шесть типов оливина, различающихся по содержаниям Со и редкоземельным элементам (РЗЭ). Соотношения элементов в палласитовом оливине свидетельствуют о том, что оливин был образован из вещества, прошедшего стадию фракционирования РЗЭ. Тридимит обогащен тяжелыми РЗЭ. Все фрагменты обогащены легкими РЗЭ, Na, Ca, Cs, Hf, Th и Ta. Простейшая модель, которая может объяснить распределение РЗЭ в минералах палласита предполагает две стадии: фазы, обогащенные как легкими, так и тяжелыми РЗЭ были выделены первыми, а кристаллы оливина в форме агломератов были образованы позже.

КЛЮЧЕВЫЕ СЛОВА: палласиты; распределение микроэлементов; оливины; дифференциация

Ссылка: Лаврентьева З. А., А. Ю. Люль, Г. М. Колесов (2010), К вопросу о происхождении палласитов, *Вестник ОНЗ РАН, 2*, NZ6022, doi:10.2205/2010NZ000040, 2010

При решении проблемы происхождения палласитов ключевыми вопросами являются когда, где и из какого материала происходила аккреция и дальнейшее формирование палласитовых метеоритов. Палласиты – это железокаменные метеориты, которые состоят в основном из оливина и Fe-Ni металла. Палласиты представляют собой как бы переходное звено между каменными метеоритами и более редкими железными метеоритами. С одной стороны, состав и термическая и история их металла свидетельствуют, что большинство из них связаны с одной из групп железных метеоритов. С другой стороны, распространенный в них оливин позволяет думать о родстве каменными метеоритами. Являются ли палласиты результатом незаконченной дифференциации вещества на силикатную фазу и металл, скажем в гравитационном поле, или они являются результатом агломерации силикатного вещества с железом - на этот вопрос пока нет однозначного ответа. Существование различных фаз в палласитах указывает на сложный процесс агломерации окисных соединении, металла, сульфидов и фосфидов. Если рассматривать железокаменные метеориты как агломерацию железо-никелевого сплава с различным силикатным веществом из разных типов каменных метеоритов, то в палласитах железо-никелевый сплав ассоциируется с оливином, в сидерофирах – с бронзитом, в лодранитах с оливином и бронзитом, в мезосидеритах с веществом брекчиевых ахондритов. Следовательно, каменно-железные метеориты различаются не только по отношению железосиликат, но и по составу силикатной фазы. Образование мезосидеритов можно объяснить только путем агломерации [Виноградов, 1965]. Возможно, образование палласитов также является результатом агломерации сначала отдельных мелких кристаллов оливина в более крупные с последующим их объединением металлической фазой. На основании химического состава металла и силикатов палласиты классифицированы на основную, основную аномальную, Eagle Station и пироксенсодержащую группы [Wasson and Choi, 2003].

Большинство палласитов основной группы имеют сходные изотопные составы кислорода с говардит-эвкрит-диогенитовой серией метеоритов и железными метеоритами группы IIIAB [*Clayton. and Mayeda*, 1996]. Относительно происхождения палласитов и их родительских тел среди исследователей пока нет единого мнения. Можно выделить ряд моделей происхождения палласитов, включая кристаллизацию вблизи поверхности внешне нагретого астероида [*Mittlefehldt*, 1980], кристаллизацию импактного расплава [*Malvin et al.*, 1985], небулярную конденсацию [*Kurat*, 1988]. Основная группа палласитов, которая, как предполагается, имела одно родительское тело, могла быть образована: 1) около поверхности тела [*Mittlefehldt*, 1980]; 3) в металл-

оливиновых контактных зонах изолированных металлических линз [Urey,1956] или 4) на границах ядро-мантия [Scott, 1977; Wasson and Choi, 2003]. Более обоснованной представляется теория, согласно которой палласиты были образованы на границе ядро-мантия в дифференцированных родительских телах, где IIIAB железные метеориты связаны с историей кристаллизации металлической фракции, а метеориты говардит – эвкрит – диогенитовой серии могли быть связаны с силикатной фракцией [Wasson and Choi, 2003; Dodd,1981; Buseck, 1977; Scott,1977; Mittlefehldt et al., 1998]. Палласиты могли быть образованы не на границе ядромантия (наиболее распространенное мнение), а как ударно-брекчированная смесь материала ядра и мантии. Смешение небольших количеств металла из ядра с оливином мантии могло быть результатом сильных ударов между астероидами [Asphaug et al., 2006]. Такие столкновения могли превратить сталкивающиеся объекты в ряд дифференцированных тел с различными металл-силикатными соотношениями. В случае основной группы палласитов 53 Mn - 53 Cr изотопные систематики позволяют предположить, что оливин-металлическое смешение имело место менее чем 10 млн. лет после образования хондр [Tomiyama et al., 2007].

В настоящей работе получены новые данные по составу минеральных фракций из палласита Омолон, которые рассматриваются с точки зрения космохимической истории палласитов. Основная цель работы – по распределению микроэлементов в отдельных минеральных фазах лучше понять петрогенезис палласитов.

Образцы и метод

Палласит Омолон (250 кг) был найден в 1982 г. (упал в 1981г.) возле реки Омолон в Магаданской области. Это - необычный палласит, он имеет оливиновые кристаллы со специфической дислокацией, которая практически не наблюдалась в других палласитах [Bondar et al., 2002]. Он содержит округлые зерна оливина (около 60 об %, размеры вплоть до 3 см, содержание Fa – 12.3 мол %) в железоникелевой матрице, содержащей камасит, тэнит и плессит [Пляшкевич и др., 1991; Desrousseaux et al., 1997]. Никелистое железо в палласите Омолон представлено камаситом, тэнитом и плесситом. Кроме этого были обнаружены акцессорные минералы: троилит, хромит, шрейберзит, никелистый фосфид и стенфилдит [Пляшкевич и др., 1991; Desrousseaux et al., 1997]. Радиационный возраст этого метеорита составляет 78 \pm 7 млн. лет, который совпадает с возрастом других железокаменных метеоритов, таких как Раtwar, Thiel Mountain, Springwatter, Admire [Шуколюков и др., 1992]. На основании изучения изотопного состава редких газов сделано заключение, что доатмосферные размеры палласита довольно большие (1.5-2) м с соответствующей массой около нескольких десятков тонн [Шуколюков и др., 1992; Bronshten et al., 1999].

Мы исследовали фракции оливинов, тридимита, металла, троилита, магнетита, добреелита и четырех фрагментов из палласита Омолон, которые были отобраны вручную под бинокулярным микроскопом MEC-2 и стереоскопическим микроскопом MIIC-2 при помощи иголки. Зерна отбирались из отсеянных на ситах фракций: d>45, 45 < d<75, 75 < d<100, 100 < d<160, 160 < d<260, 260 < d<360 мкм. Железо-никелевую фазу отделяли ручным магнитом и магнитной иголкой. Определения содержаний элементов во фракциях проводились в Центральной лаборатории анализа вещества ГЕОХИ РАН оптимизированным вариантом инструментального нейтронно-активационного анализа. Метод разработан для анализа внеземного вещества [*Колесов и др.*, 2001]. Использованы программы вычитания спектров радионуклидов матричных элементов из общих спектров анализируемых образцов [*Шубина и Колесов*, 2003].

Результаты и обсуждение

Относительные содержания элементов в исследованных фракциях метеорита представлены в табл. 1 (относительно C1 хондритов [Anders and Grevesse, 1989]) и показаны на рис. 1-5.

	Na	Ca	Cr	Sc	Fe	Со	Ni	Au	Ir	Zn	Cs	La	Sm	Eu	Yb	Lu
А	0.04	0.06	0.13	0.30	0.6	0.02	< 0.002	0.02	< 0.02	0.07	< 0.05	0.12	0.1	< 0.2	< 0.2	< 0.2
В	0.04	0.08	0.10	0.30	0.6	0.02	< 0.003	< 0.01	< 0.02	< 0.02	< 0.3	0.10	0.1	< 0.07	0.1	< 0.2
С	0.04	0.06	0.15	0.30	0.6	0.03	0.01	< 0.04	< 0.006	< 0.02	<0.4	0.09	0.1	< 0.08	< 0.1	< 0.1
D	0.03	0.12	0.10	0.35	0.6	0.02	0.007	< 0.02	< 0.006	0.06	< 0.2	0.2	0.3	0.5	0.5	0.7
Е	0.12	0.3	0.11	0.30	0.6	0.03	0.01	< 0.05	< 0.02	< 0.03	< 0.07	2.1	0.9	0.8	0.3	< 0.3
F	0.17	0.3	0.16	0.42	0.7	0.2	0.2	0.1	0.04	< 0.06	<0.9	3.9	1.4	1.2	0.5	0.5
G	0.01	< 0.05	5.9	0.06	3.7	0.04	0.01	< 0.07	0.08	< 0.02	< 0.1	< 0.5	< 0.2	< 0.5	< 0.8	<1.1
Н	0.02	<0.4	0.4	0.09	3.6	0.4	0.6	0.2	0.05	< 0.07	<0.4	<1.3	< 0.1	<0.9	<2.2	<2.5
Κ	0.03	< 0.2	0.3	0.04	3.7	3.3	13.2	4.3	0.06	0.3	< 0.8	<1.3	<1.0	<1.1	<1.5	2.9
L	0.06	<2.7	148.8	0.2	1.0	0.07	0.02	0.06	0.02	1.0	<0.7	< 0.2	<1.4	<1.4	<1.8	<8.2
М	0.07	0.5	0.01	1.0	0.1	0.2	< 0.006	< 0.1	< 0.04			12.2	15.1	35.8	20.8	24.0
Ν	2.14	0.7	0.005	3.0	1.1	0.1	0.009	0.07		0.5	12.8	77.7	33.0	42.1	9.4	8.0
0	6.3	1.2	0.04	3.5	0.6	0.3	0.1	0.3		0.3	12.2	98.7	33.4	24.4	19.6	19.1
Р	7.2	2.0	0.004	4.4	0.3	0.04	< 0.004	< 0.01		0.3	5.1	81.4	28.9	28.0	15.1	14.5
R	94	0.5	0.003	0.2	0.1	0.01	< 0.002	< 0.03		0.2	1.9	156.8	50.9	153	12.5	97
IX.	<i></i>	0.00		• •=	0112	010-2	0.002	0.00		0.2			0.012	10.0	12.0	2.1
R	Na	Ca	Cr	Sc	Fe	Со	Ni	Au	Ir	Zn	Cs	La	Sm	Eu	Yb	Lu
A	Na 0.04	Ca 0.06	Cr 0.13	Sc 0.30	Fe 0.6	Co 0.02	Ni <0.002	Au 0.02	Ir <0.02	Zn 0.07	Cs <0.05	La 0.12	Sm 0.1	Eu <0.2	Yb <0.2	Lu <0.2
A B	Na 0.04 0.04	Ca 0.06 0.08	Cr 0.13 0.10	Sc 0.30 0.30	Fe 0.6 0.6	Co 0.02 0.02	Ni <0.002 <0.003	Au 0.02 <0.01	Ir <0.02 <0.02	Zn 0.07 <0.02	Cs <0.05 <0.3	La 0.12 0.10	Sm 0.1 0.1	Eu <0.2 <0.07	Yb <0.2 0.1	Lu <0.2 <0.2
A B C	Na 0.04 0.04 0.04	Ca 0.06 0.08 0.06	Cr 0.13 0.10 0.15	Sc 0.30 0.30 0.30	Fe 0.6 0.6 0.6	Co 0.02 0.02 0.03	Ni <0.002 <0.003 0.01	Au 0.02 <0.01 <0.04	Ir <0.02 <0.02 <0.006	Zn 0.07 <0.02 <0.02	Cs <0.05 <0.3 <0.4	La 0.12 0.10 0.09	Sm 0.1 0.1 0.1	Eu <0.2 <0.07 <0.08	Yb <0.2 0.1 <0.1	Lu <0.2 <0.2 <0.1
A B C D	Na 0.04 0.04 0.04 0.04 0.03	Ca 0.06 0.08 0.06 0.12	Cr 0.13 0.10 0.15 0.10	Sc 0.30 0.30 0.30 0.35	Fe 0.6 0.6 0.6 0.6	Co 0.02 0.02 0.03 0.02	Ni <0.002 <0.003 0.01 0.007	Au 0.02 <0.01 <0.04 <0.02	Ir <0.02 <0.02 <0.006 <0.006	Zn 0.07 <0.02 <0.02 0.06	Cs <0.05 <0.3 <0.4 <0.2	La 0.12 0.10 0.09 0.2	Sm 0.1 0.1 0.1 0.3	Eu <0.2 <0.07 <0.08 0.5	Yb <0.2 0.1 <0.1 0.5	Lu <0.2 <0.2 <0.1 0.7
A B C D E	Na 0.04 0.04 0.04 0.03 0.12	Ca 0.06 0.08 0.06 0.12 0.3	Cr 0.13 0.10 0.15 0.10 0.11	Sc 0.30 0.30 0.30 0.35 0.30	Fe 0.6 0.6 0.6 0.6 0.6	Co 0.02 0.02 0.03 0.02 0.03	Ni <0.002 <0.003 0.01 0.007 0.01	Au 0.02 <0.01 <0.04 <0.02 <0.05	Ir <0.02 <0.02 <0.006 <0.006 <0.02	Zn 0.07 <0.02 <0.02 0.06 <0.03	Cs <0.05 <0.3 <0.4 <0.2 <0.07	La 0.12 0.10 0.09 0.2 2.1	Sm 0.1 0.1 0.1 0.3 0.9	Eu <0.2 <0.07 <0.08 0.5 0.8	Yb <0.2 0.1 <0.1 0.5 0.3	Lu <0.2 <0.2 <0.1 0.7 <0.3
A B C D E F	Na 0.04 0.04 0.04 0.03 0.12 0.17	Ca 0.06 0.08 0.06 0.12 0.3 0.3	Cr 0.13 0.10 0.15 0.10 0.11 0.16	Sc 0.30 0.30 0.30 0.35 0.30 0.42	Fe 0.6 0.6 0.6 0.6 0.6 0.6 0.7	Co 0.02 0.02 0.03 0.02 0.03 0.2	Ni <0.002 <0.003 0.01 0.007 0.01 0.2	Au 0.02 <0.01 <0.04 <0.02 <0.05 0.1	Ir <0.02 <0.02 <0.006 <0.006 <0.02 0.04	Zn 0.07 <0.02 <0.02 0.06 <0.03 <0.06	Cs <0.05 <0.3 <0.4 <0.2 <0.07 <0.9	La 0.12 0.10 0.09 0.2 2.1 3.9	Sm 0.1 0.1 0.3 0.9 1.4	Eu <0.2 <0.07 <0.08 0.5 0.8 1.2	Yb <0.2 0.1 <0.1 0.5 0.3 0.5	Lu <0.2 <0.2 <0.1 0.7 <0.3 0.5
A B C D E F G	Na 0.04 0.04 0.03 0.12 0.17 0.01	Ca 0.06 0.08 0.06 0.12 0.3 0.3 <0.05	Cr 0.13 0.10 0.15 0.10 0.11 0.16 5.9	Sc 0.30 0.30 0.30 0.35 0.30 0.42 0.06	Fe 0.6 0.6 0.6 0.6 0.6 0.7 3.7	Co 0.02 0.02 0.03 0.02 0.03 0.2 0.04	Ni <0.002 <0.003 0.01 0.007 0.01 0.2 0.01	Au 0.02 <0.01 <0.04 <0.02 <0.05 0.1 <0.07	Ir <0.02 <0.02 <0.006 <0.006 <0.02 0.04 0.08	Zn 0.07 <0.02 <0.02 0.06 <0.03 <0.06 <0.02	Cs <0.05 <0.3 <0.4 <0.2 <0.07 <0.9 <0.1	La 0.12 0.10 0.09 0.2 2.1 3.9 <0.5	Sm 0.1 0.1 0.3 0.9 1.4 <0.2	Eu <0.2 <0.07 <0.08 0.5 0.8 1.2 <0.5	Yb <0.2 0.1 <0.1 0.5 0.3 0.5 <0.8	Lu <0.2 <0.2 <0.1 0.7 <0.3 0.5 <1.1
A B C D E F G H	Na 0.04 0.04 0.04 0.03 0.12 0.17 0.01 0.02	Ca 0.06 0.08 0.06 0.12 0.3 0.3 <0.05 <0.4	Cr 0.13 0.10 0.15 0.10 0.11 0.16 5.9 0.4	Sc 0.30 0.30 0.30 0.35 0.30 0.42 0.06 0.09	Fe 0.6 0.6 0.6 0.6 0.6 0.7 3.7 3.6	Co 0.02 0.02 0.03 0.03 0.03 0.03 0.2 0.04 0.4	Ni <0.002 <0.003 0.01 0.007 0.01 0.2 0.01 0.6	Au 0.02 <0.01 <0.04 <0.02 <0.05 0.1 <0.07 0.2	Ir <0.02 <0.02 <0.006 <0.006 <0.02 0.04 0.08 0.05	Zn 0.07 <0.02 <0.02 0.06 <0.03 <0.06 <0.02 <0.07	Cs <0.05 <0.3 <0.4 <0.2 <0.07 <0.9 <0.1 <0.4	La 0.12 0.10 0.09 0.2 2.1 3.9 <0.5 <1.3	Sm 0.1 0.1 0.3 0.9 1.4 <0.2 <0.1	Eu <0.2 <0.07 <0.08 0.5 0.8 1.2 <0.5 <0.9	Yb <0.2 0.1 <0.1 0.5 0.3 0.5 <0.8 <2.2	Lu <0.2 <0.2 <0.1 0.7 <0.3 0.5 <1.1 <2.5
A B C D E F G H K	Na 0.04 0.04 0.04 0.03 0.12 0.17 0.01 0.02 0.03	Ca 0.06 0.08 0.06 0.12 0.3 0.3 <0.05 <0.4 <0.2	Cr 0.13 0.10 0.15 0.10 0.11 0.16 5.9 0.4 0.3	Sc 0.30 0.30 0.30 0.35 0.30 0.42 0.06 0.09 0.04	Fe 0.6 0.6 0.6 0.6 0.6 0.7 3.7 3.6 3.7	Co 0.02 0.02 0.03 0.02 0.03 0.2 0.04 0.4 3.3	Ni <0.002 <0.003 0.01 0.007 0.01 0.2 0.01 0.6 13.2	Au 0.02 <0.01 <0.04 <0.02 <0.05 0.1 <0.07 0.2 4.3	Ir <0.02 <0.02 <0.006 <0.006 <0.02 0.04 0.08 0.05 0.06	Zn 0.07 <0.02 <0.02 0.06 <0.03 <0.06 <0.02 <0.07 0.3	Cs <0.05 <0.3 <0.4 <0.2 <0.07 <0.9 <0.1 <0.4 <0.8	La 0.12 0.10 0.09 0.2 2.1 3.9 <0.5 <1.3 <1.3	Sm 0.1 0.1 0.1 0.3 0.9 1.4 <0.2 <0.1 <1.0	Eu <0.2 <0.07 <0.08 0.5 0.8 1.2 <0.5 <0.9 <1.1	Yb <0.2 0.1 <0.1 0.5 0.3 0.5 <0.8 <2.2 <1.5	Lu <0.2 <0.2 <0.1 0.7 <0.3 0.5 <1.1 <2.5 2.9
A B C D E F G H K L	Na 0.04 0.04 0.03 0.12 0.17 0.01 0.02 0.03 0.06	Ca 0.06 0.08 0.06 0.12 0.3 0.3 <0.05 <0.4 <0.2 <2.7	Cr 0.13 0.10 0.15 0.10 0.11 0.16 5.9 0.4 0.3 148.8	Sc 0.30 0.30 0.30 0.35 0.30 0.42 0.06 0.09 0.04 0.2	Fe 0.6 0.6 0.6 0.6 0.6 0.7 3.7 3.6 3.7 1.0	Co 0.02 0.02 0.03 0.02 0.03 0.2 0.04 0.4 3.3 0.07	Ni <0.002 <0.003 0.01 0.007 0.01 0.2 0.01 0.6 13.2 0.02	Au 0.02 <0.01 <0.04 <0.02 <0.05 0.1 <0.07 0.2 4.3 0.06	Ir <0.02 <0.02 <0.006 <0.006 <0.02 0.04 0.08 0.05 0.06 0.02	Zn 0.07 <0.02 <0.02 0.06 <0.03 <0.06 <0.02 <0.07 0.3 1.0	Cs <0.05 <0.3 <0.4 <0.2 <0.07 <0.9 <0.1 <0.4 <0.8 <0.7	La 0.12 0.10 0.09 0.2 2.1 3.9 <0.5 <1.3 <1.3 <0.2	Sm 0.1 0.1 0.1 0.3 0.9 1.4 <0.2 <0.1 <1.0 <1.4	Eu <0.2 <0.07 <0.08 0.5 0.8 1.2 <0.5 <0.9 <1.1 <1.4	Yb <0.2 0.1 <0.1 0.5 0.3 0.5 <0.8 <2.2 <1.5 <1.8	Lu <0.2 <0.2 <0.1 0.7 <0.3 0.5 <1.1 <2.5 2.9 <8.2
A B C D E F G H K L M	Na 0.04 0.04 0.03 0.12 0.17 0.01 0.02 0.03 0.06 0.07	Ca 0.06 0.08 0.06 0.12 0.3 0.3 <0.05 <0.4 <0.2 <2.7 0.5	Cr 0.13 0.10 0.15 0.10 0.11 0.16 5.9 0.4 0.3 148.8 0.01	Sc 0.30 0.30 0.30 0.35 0.30 0.42 0.06 0.09 0.04 0.2 1.0	Fe 0.6 0.6 0.6 0.6 0.7 3.7 3.6 3.7 1.0 0.1	Co 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03	Ni <0.002 <0.003 0.01 0.007 0.01 0.2 0.01 0.6 13.2 0.02 <0.006	Au 0.02 <0.01 <0.04 <0.02 <0.05 0.1 <0.07 0.2 4.3 0.06 <0.1	Ir <0.02 <0.02 <0.006 <0.006 <0.02 0.04 0.08 0.05 0.06 0.02 <0.04	Zn 0.07 <0.02 <0.02 0.06 <0.03 <0.06 <0.02 <0.07 0.3 1.0	Cs <0.05 <0.3 <0.4 <0.2 <0.07 <0.9 <0.1 <0.4 <0.8 <0.7	La 0.12 0.10 0.09 0.2 2.1 3.9 <0.5 <1.3 <1.3 <0.2 12.2	Sm 0.1 0.1 0.1 0.3 0.9 1.4 <0.2 <0.1 <1.0 <1.4 15.1	Eu <0.2 <0.07 <0.08 0.5 0.8 1.2 <0.5 <0.9 <1.1 <1.4 35.8	Yb <0.2 0.1 <0.1 0.5 0.3 0.5 <0.8 <2.2 <1.5 <1.8 20.8	Lu <0.2 <0.2 <0.1 0.7 <0.3 0.5 <1.1 <2.5 2.9 <8.2 24.0
A B C D F G H K L M N	Na 0.04 0.04 0.03 0.12 0.17 0.01 0.02 0.03 0.06 0.07 2.14	Ca 0.06 0.08 0.06 0.12 0.3 0.3 <0.05 <0.4 <0.2 <2.7 0.5 0.7	Cr 0.13 0.10 0.15 0.10 0.11 0.16 5.9 0.4 0.3 148.8 0.01 0.005	Sc 0.30 0.30 0.30 0.35 0.30 0.42 0.06 0.09 0.04 0.2 1.0 3.0	Fe 0.6 0.6 0.6 0.6 0.7 3.7 3.6 3.7 1.0 0.1 1.1	Co 0.02 0.02 0.03 0.02 0.03 0.2 0.04 0.4 3.3 0.07 0.2 0.1	Ni <0.002 <0.003 0.01 0.007 0.01 0.2 0.01 0.6 13.2 0.02 <0.006 0.009	Au 0.02 <0.01 <0.04 <0.02 <0.05 0.1 <0.07 0.2 4.3 0.06 <0.1 0.07	Ir <0.02 <0.02 <0.006 <0.006 <0.02 0.04 0.08 0.05 0.06 0.02 <0.04	Zn 0.07 <0.02 <0.02 0.06 <0.03 <0.06 <0.02 <0.07 0.3 1.0 0.5	Cs <0.05 <0.3 <0.4 <0.2 <0.07 <0.9 <0.1 <0.4 <0.8 <0.7 12.8	La 0.12 0.10 0.09 0.2 2.1 3.9 <0.5 <1.3 <1.3 <0.2 12.2 77.7	Sm 0.1 0.1 0.1 0.3 0.9 1.4 <0.2 <0.1 <1.0 <1.4 15.1 33.0	Eu <0.2 <0.07 <0.08 0.5 0.8 1.2 <0.5 <0.9 <1.1 <1.4 35.8 42.1	Yb <0.2 0.1 <0.1 0.5 0.3 0.5 <0.8 <2.2 <1.5 <1.8 20.8 9.4	Lu <0.2 <0.2 <0.1 0.7 <0.3 0.5 <1.1 <2.5 2.9 <8.2 24.0 8.0
A B C D E F G H K L M N O	Na 0.04 0.04 0.03 0.12 0.17 0.01 0.02 0.03 0.06 0.07 2.14 6.3	Ca 0.06 0.08 0.06 0.12 0.3 0.3 <0.05 <0.4 <0.2 <2.7 0.5 0.7 1.2	Cr 0.13 0.10 0.15 0.10 0.11 0.16 5.9 0.4 0.3 148.8 0.01 0.005 0.04	Sc 0.30 0.30 0.30 0.35 0.30 0.42 0.06 0.09 0.04 0.2 1.0 3.0 3.5	Fe 0.6 0.6 0.6 0.6 0.7 3.7 3.6 3.7 1.0 0.1 1.1 0.6	Co 0.02 0.02 0.03 0.02 0.03 0.2 0.04 0.4 3.3 0.07 0.2 0.1 0.3	Ni <0.002 <0.003 0.01 0.007 0.01 0.2 0.01 0.6 13.2 0.02 <0.006 0.009 0.1	Au 0.02 <0.01 <0.04 <0.02 <0.05 0.1 <0.07 0.2 4.3 0.06 <0.1 0.07 0.3	Ir <0.02 <0.02 <0.006 <0.02 0.04 0.08 0.05 0.06 0.02 <0.04	Zn 0.07 <0.02 <0.02 0.06 <0.03 <0.06 <0.02 <0.07 0.3 1.0 0.5 0.3	Cs <0.05 <0.3 <0.4 <0.2 <0.07 <0.9 <0.1 <0.4 <0.8 <0.7 12.8 12.2	La 0.12 0.10 0.09 0.2 2.1 3.9 <0.5 <1.3 <1.3 <0.2 12.2 77.7 98.7	Sm 0.1 0.1 0.1 0.3 0.9 1.4 <0.2 <0.1 <1.0 <1.4 15.1 33.0 33.4	Eu <0.2 <0.07 <0.08 0.5 0.8 1.2 <0.5 <0.9 <1.1 <1.4 35.8 42.1 24.4	Yb <0.2 0.1 <0.1 0.5 0.3 0.5 <0.8 <2.2 <1.5 <1.8 20.8 9.4 19.6	Lu <0.2 <0.2 <0.1 0.7 <0.3 0.5 <1.1 <2.5 2.9 <8.2 24.0 8.0 19.1
A B C D E F G H K L M N O P	Na 0.04 0.04 0.03 0.12 0.17 0.01 0.02 0.03 0.06 0.07 2.14 6.3 7.2	Ca 0.06 0.08 0.06 0.12 0.3 0.3 <0.05 <0.4 <0.2 <2.7 0.5 0.7 1.2 2.0	Cr 0.13 0.10 0.15 0.10 0.11 0.16 5.9 0.4 0.3 148.8 0.01 0.005 0.04 0.004	Sc 0.30 0.30 0.30 0.35 0.30 0.42 0.06 0.09 0.04 0.2 1.0 3.0 3.5 4.4	Fe 0.6 0.6 0.6 0.6 0.7 3.7 3.6 3.7 1.0 0.1 1.1 0.6 0.3	Co 0.02 0.02 0.03 0.02 0.03 0.2 0.04 0.4 3.3 0.07 0.2 0.1 0.3 0.04	Ni <0.002 <0.003 0.01 0.007 0.01 0.2 0.01 0.6 13.2 0.02 <0.006 0.009 0.1 <0.004	Au 0.02 <0.01 <0.04 <0.02 <0.05 0.1 <0.07 0.2 4.3 0.06 <0.1 0.07 0.3 <0.01	Ir <0.02 <0.02 <0.006 <0.02 0.04 0.08 0.05 0.06 0.02 <0.04	Zn 0.07 <0.02 <0.02 0.06 <0.03 <0.06 <0.02 <0.07 0.3 1.0 0.5 0.3 0.3	$\begin{array}{c} \text{Cs} \\ < 0.05 \\ < 0.3 \\ < 0.4 \\ < 0.2 \\ < 0.07 \\ < 0.9 \\ < 0.1 \\ < 0.4 \\ < 0.8 \\ < 0.7 \\ \end{array}$ $\begin{array}{c} 12.8 \\ 12.2 \\ 5.1 \\ \end{array}$	La 0.12 0.10 0.09 0.2 2.1 3.9 <0.5 <1.3 <0.2 12.2 77.7 98.7 81.4	Sm 0.1 0.1 0.3 0.9 1.4 <0.2 <0.1 <1.0 <1.4 15.1 33.0 33.4 28.9	$\begin{array}{r} \text{Eu} \\ <0.2 \\ <0.07 \\ <0.08 \\ 0.5 \\ 0.8 \\ 1.2 \\ <0.5 \\ <0.9 \\ <1.1 \\ <1.4 \\ 35.8 \\ 42.1 \\ 24.4 \\ 28.0 \end{array}$	Yb <0.2 0.1 <0.1 0.5 0.3 0.5 <0.8 <2.2 <1.5 <1.8 20.8 9.4 19.6 15.1	Lu <0.2 <0.2 <0.1 0.7 <0.3 0.5 <1.1 <2.5 2.9 <8.2 24.0 8.0 19.1 14.5

Табл. 1. Содержания элементов во фракциях палласита Омолон, нормированные к С1- хондритам

A – чистый оливин; B – желтый оливин; C - оливин с круглыми включениями непрозрачных минералов; D – оливин с каемками из непрозрачных минералов; E – оливин в контакте с матрицей; F – оливин с металлическими оболочками; G – троилит; H – магнетит; K – металл; L – добреелит; M – тридимит; N – фрагмент 1; O – фрагмент 2; P - фрагмент 3; R – фрагмент 4

Фракции оливина

Для чистого оливина (фр. A), рис.1, характерно соотношение (Co /Au)_A / (Co/ Au)_{C1} = 1.0, соответствующее C1 хондритам. Распространенность Co относительно Ni в чистом оливине самая высокая по сравнению с таковыми для других фракций оливинов - (Co /Ni)_{A,B,C,D} / (Co / Ni)_{C1} = >10.0, > 6.67, 3.0, 2.86. Другой особенностью распределения элементов в этих оливиновых фракциях палласита Омолон являются высокие распространенности скандия относительно кальция (Sc/Ca)_{A,B,C,D}/(Sc/Ca)_{C1} = 5.0, 4,38, 5.0, 2.92. Такое распределение высокотемпературных элементов с близкой температурой конденсации свидетельствует о сильном фракционировании этих элементов в веществе – предшественнике этих оливинов. В распределениях La относительно Sm в оливинах наблюдается некоторое фракционирование, проявляющееся как в обогащении, так и обеднении элементов (La/ Sm)_{A,B,C,D}/(La/ Sm)_{C1} = 1.1, 1.63, 0.82, 0.61.

Рис. 1. Нормированные к C1-хондритам содержания элементов в чистом оливине из палласита Омолон.

В оливинах с круглыми включениями, фр. С, включения состоят из троилита и камасита. Никелистый фосфид, тэнит, стенфилдит и хромит содержатся в незначительных количествах [Sharygin et al., 2006]. Круглые металл-сульфидные включения в оливине палласита Омолон сходны по минералогическому составу с округлыми металл-сульфидными хондрами (Мхондрами) из хондритов. Известно, [Gooding and Keil, 1981], что М-хондры состоят из Fe,Niфаз, сульфидов и акцессорных фосфидов, фосфатов, окислов (магнетит) и иногда фрагментов силикатного материала. Их структура свидетельствует об эвтектическом плавлении ассоциации металл-сульфид, а морфологическая подобность силикатным хондрам - об их генезисе в едином процессе хондрообразования [Bevan and Axon, 1980; Nagahara, 1982].

Одной из особенностей оливинов с каемками непрозрачных минералов, фр. D, является то, что соотношение между иттербием и европием $(Yb/Eu)_D/(Yb/Eu)_{C1} = 1.0$ соответствует C1 хондритам. Второй особенностью фр. D является самое большое обеднение в ней La относительно Sm из всех проанализированных оливиновых фракций в палласите Омолон - (La/Sm)_A /(La/Sm)_{C1} = 0.61. Распределение Co относительно Ni в оливинах с каемками непрозрачных минералов отличается от такового в чистом оливине, соотношения (Co /Ni)_D / (Co/Ni)_{C1} = 2.8, что более, чем в 3.5 раза ниже, чем во фракции А.

Для оливинов в контакте матрицей, фр. Е, и оливинов с оболочками непрозрачных минералов, фр. F, характерно обогащение тугоплавкими литофильными элементами. Первая фракция обогащена только одним элементом, La (2.1xC1), во второй фракции наблюдаются обогащения La(3.9xC1), Sm (1.4xC1) и Eu (1.2xC1)... Для этих оливинов характерно обогащение легкими P3Э - минимумом (La_E /La_{C1}/ (Yb_E /Yb_{C1})= 7.8; (La_F /La_{C1}/ (Yb_F /Yb_{C1})=7.0; с небольшим Eu-минимумом: (Sm_E/Sm_{C1}) / (Eu_E/Eu_{C1}) = 1.2; (Sm_F/Sm_{C1}) / (Eu_F/Eu_{C1}) = 1.1;

Одной из особенностей распределения элементов в оливине в контакте с матрицей является то, что соотношение высокотемпературных элементов с близкими температурами конденсации $(Ca/Sc,Yb)_{E/}(Ca/Sc,Yb)_{C1} = 1.0$ соответствует C1 хондритам, что свидетельствует о равномерном распределении Ca, Sc и Yb в этой фракции. В хондрах неметаморфизованного хондрита Каинсаз CO3 обнаружено такое же соотношение этих элементов[Лаврухина и др.,1987]. При равномерном распределении Ca, Sc и Yb в этой фракции наблюдается обогащение легкими редкоземельными элементами и европием $(La/Yb)_{E/}(La/Yb)_{c1}=7.0$; $(Sm/Yb)_{E/}(Sm/Yb)_{c1}=3.0$; $(Eu/Yb)_{E/}(Eu/Yb)_{c1}=2.7$. Другой особенностью распределения элементов в оливиновой фракции Е является аномальное соотношение $(La/Sm)_{E}/(La/Sm)_{C1}=2.3$, сходное с таковым для хондр хондрита Каинсаз и богатых калием вулканических лав [Лаврухина, 1989].

Основной особенностью, отличающей оливины с металлическими оболочками от всех оливиновых фракций, изученных в палласите Омолон, является соотношение $(Ni/Co)_F/(Ni/Co)_{C1} = 1.0$, соответствующее C1 хондритам. Соотношения никеля к другим сидерофильным элементам значительно выше, таковыми являются $(Ni/Au,Ir)_F/(Ni/Au,Ir)_{C1} = 2.0$; 5.0. Для

оливинов из фракции F палласита Омолон также как и для хондр хондрита Каинсаз [Лаврухина, 1989], характерно аномальное соотношение лантана к самарию (La/ Sm)_E/(La/ Sm)_{C1} = 2.8.

Содержания Са в оливиновых фракциях Е и F на порядок выше (0.3xC1), чем в оливиновых фракциях A, B, C и D (0.06-0.08хС1). Такое обогащение оливина Са и легкими РЗЭ с отрицательной Eu-аномалией может быть связано с образованием фосфата на контакте оливинметалл. Смит [Smith, 1966] на основании данных анализа земных оливинов, а позднее Додд [Dodd, 1973] по содержанию CaO в оливинах хондр хондрита Sharps H3 обосновали идею о том, что уровень содержания CaO является индикатором тепловой истории оливинов, ибо быстрое остывание от высоких температур является благоприятным фактором для сохранения оливиновой решеткой высоких содержаний кальция. Эти эмпирические данные были в дальнейшем подтверждены экспериментально и теоретически [Warner and Luth,1973; Stormer, 1973]. Низкие содержания Са в трех оливиновых фракциях (А, В и С) в пределах (0.06 – 0.08 вес%) согласуются с другими данными [Buseck and Goldstein, 1969], свидетельствующими о том, что оливины охлаждались крайне медленно от высоких температур. Для оливинов равновесных обыкновенных хондритов также характерно низкое содержание CaO (<0.1 масс %) [Warner and Luth, 1973; Stormer, 1973]. В [Smith, 1971] впервые было обнаружено бимодальное распределение CaO в лунных оливинах и предположено, что высококальциевые являются вулканическими, а низкокальциевые – плутоническими оливинами. Аналогичная картина наблюдается и для земных оливинов [Smith, 1971]: для плутонических пород содержания CaO в оливинах ≤ 0.1 масс% и не зависит от количества Fa компоненты в широком диапазоне ее содержаний (от 10 до 99 моль %). Такие же низкие количества СаО характерны и для оливинов во включениях в алмазах, перидотитовых и ультраосновных включениях в кимберлитах и вулканических породах [Соболев, 1974]. Высокие содержания Са в оливинах на контактах с металлом и матрицей в пределах 0.25 - 0.27 вес % сходны с таковыми в оливинах земных и лунных вулканических пород [Dodd, 1972] и свидетельствуют о быстром охлаждении от высоких температур.

Тридимит, троилит, добреелит, металл

В тридимите, фр. М, рис.3, наблюдается обогащение РЗЭ с явным преобладанием тяжелых (Lu /La)_M/(Lu /La)_{C1} =1.97 и положительной Eu аномалией - (Eu/Sm)_M (Eu/ Sm)_{C1} = 2.37. Распространенность Sc в тридимите соответствует C1 хондритам. Распределение элементов в тридимите свидетельствует о том, что он является минералом - концентратором тяжелых редкоземельных элементов.

Рис. 2. Нормированные к C1-хондритам содержания элементов в тридимите из палласита Омолон. 1- тридимит.

ЛАВРЕНТЬЕВА И ДР.: К ВОПРОСУ О ПРОИСХОЖДЕНИИ ПАЛЛАСИТОВ

В троилите, фр. G, наблюдается обогащение хромом, железом, иридием и кобальтом относительно никеля - $(Cr,Fe, Ir, Co/Ni)_G/(Cr,Fe, Ir, Co/Ni)_{C1} = 590, 301.7, 8.0, 4.0.$ Такое распределение сидерофильных элементов в троилите свидетельствует о том, что Cr, Fe, Ir, и Co проявляют более халькофильные свойства, чем Ni. Обогащение хромом троилита может быть связано с присутствием добреелита.

В добреелите, фр.L, рис.4, распространенности железа и цинка $(Fe,Zn)_L/(Fe,Zn)_{C1} = 1.0$ и соотношение $(Ir/Ni)_L/(Ir/Ni)_{C1}= 1.0$ соответствуют C1 хондритам. Распространенности среднелетучих Zn и Na с близкими температурами конденсации сильно различаются $(Zn / Na)_L/(Zn / Na)_{C1} = 16.7$, так как проявляют разные геохимические свойства. Добреелит обогащен Co и Au относительно Ni и Ir. Распределения сидерофильных элементов в троилите и добреелите свидетельствуют о том, что эти минералы формировались в разных условиях, очевидно, троилит при более высокой температуре, чем добреелит.

Рис. 3. Нормированные к C1-хондритам содержания элементов в металле и добреелите из палласита Омолон. 1– металл; 2 – добреелит.

Рис. 4. Нормированные к C1-хондритам содержания элементов в троилите и магнетите из палласита Омолон. 1– троилит; 2 – магнетит.

Согласно полученным данным содержание Со (0.16%) в никелистом железе (фр.К,), рис.4, в палласите Омолон значительно ниже, чем в железных метеоритах (0.4-0.7%) и энстатитовых и обыкновенных хондритах (0.3-1.3%) [Scott, 1972]. Содержание Ir (0.03мкг/г) входит в интервал содержаний этого элемента в железных метеоритах (0.02-60 мкг/г) [Scott, 1978]. Никелистое железо палласита Омолон содержит Au (0.6мкг/г) в количествах меньших, чем Е- и Н-хондриты, но выше нижнего предела для железных метеоритов [Scott, 1972; Scott, 1978].

Распространенности Ir, Co Au в Fe,Ni-фазе в палласите относительно Ni и C1 хондритов меньше единицы, следовательно, ниже космических. Рассмотрение химического состава Fe,Niфазы палласитов показывает, что величины отношений Au/Ni As/Ni Ir/Ni и Ga/Ni различных групп палласитов не соответствует составу Fe,Ni-фазы хондритов. По соотношению Ga-Ge и содержанию Au, As, Ir, Ni и W палласиты основной группы соответствуют железным метеоритам IIIAB с высоким содержанием Ni [Scott,1977]. Для них характерно низкое значение (Ir/Ni)cp. = 0.43x10⁻⁵. Это не противоречит тому, что Fe,Ni-фаза основной группы палласитов могла образоваться при частичном плавлении металла хондритов (значения Au/Ni и As/Ni поддерживают это предположение) [Лаврухина и др., 1982].

Фрагменты, обогащенные тугоплавкими литофильными элементами

В палласите Омолон выделены четыре фрагмента N,O,P,R с высокими содержаниями тугоплавких литофильных элементов (ТЛЭ). Относительные содержания элементов приведены в табл. 1. и показаны на рис. 2..

Степень обогащения легкими РЗЭ во всех фрагментах палласита Омолон выше, чем в грубозернистых САІ хондрита Allende [Grossman et al.,1977] и во фрагментах хондрита Каинсаз СО, обогащенных ТЛЭ [Люль и ∂p .,1990]. В меньшей мере каждый фрагмент палласита Омолон обогащен Yb и Lu. Во фрагментах N, O, P и R наблюдается заметное фракционирование между легкими и тяжелыми РЗЭ – (La/Lu)_N / (La/Lu)_{C1}= 9.7; (La/Lu)_O / (La/Lu)_{C1}=5.2; (La/Lu)_P / (La/Lu)_{C1}=6.6; (La/Lu)_R / (La/Lu)_{C1}=16.2 с положительными аномалиями Eu и в N – фрагменте и отрицательными Eu аномалиями в O и R фрагментах. Такое фракционирование РЗЭ не характерно для CAI включений CV хондритов [Grossman et al., 1977], но оно проявляется во фрагментах KS1, KS2 и KS3 в хондрите Каинсаз CO [Люль и ∂p ., 1990]. В хондрите Каинсаз степень фракционирования между легкими и тяжелыми РЗЭ увеличивается с возрастанием в них содержания скандия.

Рис. 5. Нормированные к С1-хондритам содержания редких элементов в N, O, P и R фрагментах из палласита Омолон. 1 – фрагмент N (коричнево-красное стекло), 2 – фрагмент O (темно-коричневое стекло), 3 – фрагмент P (полупрозрачная зеленовато-серая порода), 4 – фрагмент R (светлая плотная порода).

перечисленные выше включения с таким же типом фракционирования РЗЭ. Во фрагментах палласита Омолон степень фракционирования между легкими и тяжелыми РЗЭ увеличивается с возрастанием в них содержания Na. Очевидно легкие РЗЭ, Na и Th входят в один минерал. В палласите Омолон обнаружены два фосфата [Sharygin et al., 2006]: стенфилдит Ca₄ Mg ₃ Fe₂ (PO₄)₆

ЛАВРЕНТЬЕВА И ДР.: К ВОПРОСУ О ПРОИСХОЖДЕНИИ ПАЛЛАСИТОВ

и витлокит (Ca Mg Fe²⁺)₃ (PO₄)₂. Витлокит в данном случае представляет геохимический интерес, поскольку в нем содержится, то небольшое количество щелочей, которые имеются в палласитах. Следовательно, легкие P3Э, Na и Th во фрагментах концентрируются в витлоките. Davis and Olsen [*Davis and Olsen*,1991; *Davis* and Olsen,1996] наблюдали высокие содержания редкоземельных элементов в Ca и Mg фосфатах в немагнитной фракции палласитов. Согласно их модели высокая распространенность редких земель контролируется образованием фосфатов на границе оливин - металл. Очевидно, что фрагменты в палласите Омолон обогащены фосфатами.

Выводы

- В палласите Омолон идентифицированы шесть типов оливинов: первый тип А (чистый оливин), второй тип В (желтый оливин), третий тип С (оливин с круглыми включениями непрозрачных минералов), четвертый тип D (оливин с каемками непрозрачных минералов), пятый тип Е (оливин в контакте с матрицей) и шестой тип F (оливин с металлическими оболочками. Первые четыре типа различаются по распространенностям Со относительно Ni и C1 хондритов. Пятый и шестой типы выделены по распределению легких редкоземельных элементов относительно C1 хондритов.
- 2) На основании полученных данных о распределении Са в оливинах относительно С1 хондритов выделено две группы оливинов, которые формировались при высоких температурах, но с разными скоростями остывания: первая группа (низкокальциевая) при медленном остывании, вторая группа (высококальциевая) при быстром остывании.
- 3) Распределения элементов в оливинах палласита Омолон имеют сходства с таковыми в хондрах хондрита Каинсаз СОЗ - соотношения большинства литофильных элементов соответствуют С1 хондритам. Такое распределение элементов в оливинах палласита Омолон и хондрах хондрита Каинсаз свидетельствует о том, что они образовались в едином процессе переплавления компонентов с разной температурой конденсации.
- 4) Металлическая фаза претерпела изменения в химическом составе со времени своего образования, о чем свидетельствует характер распределения сидерофильных элементов в металле палласита.
- 5) Анализ химического состава акцессорных минералов показал: 1) минералом концентратором тяжелых редкоземельных элементов является тридимит, 2) троилит и добреелит были образованы в разных температурных условиях, 3) магнетит является минералом внешней зоны коры плавления.
- 6) Обнаружено четыре фрагмента, обогащенных тугоплавкими литофильными элементами с высокой степенью фракционирования РЗЭ. Необычный химический состав фаз и высокая степень фракционирования РЗЭ во фрагментах указывают на их образование при высоких температурах на ранней стадии эволюции Солнечной системы. Фазы-носители аномальных литофильных элементов во фрагментах могут быть сохранившимися реликтами первых конденсатов в ДПО.
- 7) По-видимому, не лишена основания постановка вопроса о том, не является ли образование палласита Омолон результатом агломерации сначала отдельных мелких кристаллов оливина в более крупные кристаллы с последующим их объединением металлической фазой.

Литература

Виноградов, А. П. (1965), Вещество метеоритов, Геохимия, №11, 1275-1312.

- Колесов, Г. М., Н. А. Шубина, А. Ю. Люль (2001), Оптимизация инструментального нейтронно-активационного анализа внеземного вещества: фрагментов лунных пород, метеоритов, хондр и ультратугоплавких включений, *Журнал аналитической химии*, 56, № 11, 1169-1172.
- Лаврухина, А. К., А. Ю. Люль, Г. В. Барышникова (1982), О распределении сидерофильных элементов в Fe, Ni-фазе обыкновенных и энстатитовых хондритов, *Геохимия*, №5, 645-663.
- Лаврухина, А. К., А.Ю. Люль, Г. М. Колесов, Г. В. Барышникова (1987), Особенности элементного состава хондр обыкновенных хондритов Оханск Н4, Саратов L3-4 и углистого хондрита Каинсаз СОЗ, *Геохимия*, №1, 44-63.

- Лаврухина, А. К. (1989), Распределение Na, К и редкоземельных элементов в хондрах, *Геохимия, №*9,1231-1245.
- Люль, А. Ю., Г. М. Колесов, А. К. Лаврухина (1990) Распределение тугоплавких элементов в фрагментах углистого хондрита Каинсаз СО. *Геохимия, №10*, 1467-1475.
- Пляшкевич, А. А., Н. Е.Савва., Г. Ф.Павлов (1991) Омолон первый палласит Северо–Востока СССР, Докл. АНСССР, 318, №1, 197-202.
- Соболев, Н. В. (1974), Глубинные включения в кимберлитах и проблема состава верхней мантии, Наука, Новосибирск.
- Шубина, Н. А., Г. М. Колесов (2003), Снижение пределов нейтронно-активационного обнаружения микроэлементов в искусственных и природных материалах вычитанием спектров радионуклидов матричных элементов из общего спектра исследуемого образца, *Журнал аналитической химии*, 58, № 9, 980-986.
- Шуколюков, Ю. А., Ю. В. Клименко, Ю. А. Колясников, М. В. Колосков (1992), Благородные газы в оливине из палласита Омолон, *Геохимия*, №7, 923-938.
- Anders, E., N. Grevesse (1989), Abundances of the elements: Meteoritic and solar, *Geochim. Cosmochim. Acta.*, 53, №1, 197-214.
- Asphaug, E., C. B Agnor, Q. Williams (2006), Hut-and-run planetary collisions, *Nature*, 438, 155-160.
- Bevan, A. W. R. and H. J. Axon (1980), Metallography and thermal history of the tieschitz unequilibrated meteorite-metallic chondrules and the origin of polycrystalline taenite, *Earth Planet. Sci. Lett.*, 47, №3, 353-360.
- Bondar, J. V., V. P. Perelygin, R. I. Petrova (1997), Fossil track studies of the Omolon pallasite crystals, *Radiation Measurements*, 28, 337-340.
- Bondar, Yu. V., Kashkarov L. L., Perelygin V. P. (2002), Tracks and dislocations in silicate minerals of the Omolon pallasite, *Lunar Planet*. Sci. *Conf.* 33th, Houston: LPI, CD #1067.
- Bronshten, V. A., V. E. Zharov, R. L. Khotinok (1999), Atmospheric trajectory and orbit of the Omolon meteorite, *Meteorit. Planet.Sci.*, 34, A131-A135.
- Buseck, P. R., J. I. Goldstein (1969), Olivine compositions and cooling rates of pallasitic meteorites, *Geol.Soc.Am. Bull.*, 80, 2141-2158.
- Buseck, P. R. (1977), Pallasite meteorites- mineralogy, petrology and geochemistry, *Geochim. Cosmochim. Acta., V.41, №6,* 711-740.
- Clayton, R. N., T. K Mayeda (1996), Oxygen isotope studies of achondrites, *Geochim. Cosmochim. Acta.*, 60, 1999-2017.
- Davis, A. M., E. J. Olsen (1991), Phosphates in the pallasite meteorites as probes of mantle processes in small planetary bodies, *Nature*, 353, 637-640.
- Davis, A. M., E. J. Olsen (1996), REE patterns in pallasite phosphates. A window on mantle differentiation in parent body, Meteorit, *Planet. Sci.*, 31, A34-A35.
- Desrousseaux, A., J. C., Doukhan, H. Leroux, Van J. C. Duysen (1997), An analytical electron microscope investigation of some pallasites, *Phys. Earth Planet. Interiors.*, 103, 101-115.
- Dodd, R. T. (1972), Calcium in chondrite olivine, Geol.Soc.Amer. Mem., №132, 651
- Dodd, R. T. (1973), Minor element abundances in olivines of the Sharps (H-3) chondrite. *Contribs Mineral and Petrol.*, 42, №2, 159.
- Dodd, R. T. (1981), *Meteorites: A petrologic-chemical synthesis*, Cambridge e.a.: Cambridge Univ. Press.
- Gooding, I. L., R. Keil (1981), Relative abundances of chondrule primary textural types in ordinary chondrites and their bearing on conditions of chondrule formation, *Meteoritics*, 16, №1, 17-43.
- Grossman, L., R. Ganapathy, A. M. Davis (1977), Trace elements in the Allende meteorite- III. Coarse-grained, Ca-rich inclusions nevisited, *Geochim. Cosmochim.Acta*, 41, №11, 1647-1664.
- Kurat G. (1988), Primitive meteorites: an attempt toward unification, *Philos. Trans. R. Soc. London*, A325, 459-482.
- Malvin, D. J., J. T. Wasson, R. N. Clayton, T. K. Mayeda (1985), Bocainva a silicate inclusion bearing iron meteorite related to the Eagle Station pallasites, *Meteoritics*, 20, №2, 259-273.
- Mittlefehldt D. W. (1980), The composition of mesosiderite olivine clasts and implications for the origin of pallasites, *Earth Planet. Sci. Lett.*, 51, №1, 29 40.
- Mittlefehldt, D. W., T. J. Mc Coy, C. A. Goodrich, A. Kracher (1998), Non chondritic meteorites from asteroidal bodies, *Planetary Materials*, PapikeJ.J. (Ed), 195.

- Nagahara, H. (1982), Ni-Fe metals in the type 3 ordinary chondrites. *Nem. Nat. Inst. Polar. Res.*, Spec. iss., №25, 86-96.
- Scott, E. R. D. (1972), Chemical fractionation in iron meteorites and its interpretation, *Geochim. Cosmochim.Acta*, 36, №11, 1205-1236.
- Scott, E. R. D. (1977), Pallasites metal composition, classification and relationships with iron meteorites, *Geochim. Cosmochim. Acta*, 41, №3, 349-360.
- Scott, E. R. D. (1977), Geochemical relationships between some pallasites and iron meteorites. *Mineral. Mag.*, 41, №318, 265-272.
- Scott, E. R. D. (1978), Iron meteorites with low Ga and Ge concentrations-compositions, structure and genetic relationship, *Geochim. Cosmochim.Acta*, 42, №8, 1243-1251.
- Sharygin, V. V., S. V. Kovyasin, N. M. Podgornykh (2006), Mineralogy of olivine hosted inclusions from the Omolon pallasite, *Lunar Planet. Sci. Conf.* 37th, *Houston: LPI*, CD #1235.
- Smith, J. V. (1966), X-ray emission microanalysis of rock-forming minerals. II. Olivines, *Geol.*, 74, №1, 1.
- Smith, J. V. (1971), Minor elements in Apollo 11 and 12 olivine and plagioclase, *Proc.Second Lunar Sci. Conf. Geochim. Cosmochim.Acta.* Suppl. 2,141.
- Stormer, Y. G. (1973), Calcium zoning and relationship to silica activity and pressure, *Geochim. Cosmochim.Acta*, 37, №8, 1815.
- Tomiyama, T., G. R. Huss, K. Nagashima, A. N. Krot (2007), Ion microprobe analysis of ⁵³Mn ⁵³Cr systematics in pallasite meteorite, *Lunar Planet. Sci. Conf.* 38th.*Houston: LPI*, CD #2007.

Urey H. C. (1956), Diamonds, meteorites, and the origin the solar system, Astrophys. J., 124, 623-637.

- Wahl, W. (1965), The pallasite problem, Geochim. Cosmochim. Acta, 29, №3, 177-181.
- Warner R. D., W. C. Luth (1973), Two phase data for the join montcellite (CaMgSiO₄)- forsterite (Mg₂SiO₄): experimental result and numerical analysis, *Amer. Miner.*, 58, №11-12, 998.
- Wasson, J. T., B. G. Choi (2003), Main–group pallasites: chemical composition, relationship to III AB irons, and origin. *Geochim. Cosmochim.Acta*, 67, №16, 3079-3096.

3. А. ЛАВРЕНТЬЕВА, А. Ю. ЛЮЛЬ, Г. М. КОЛЕСОВ Институт геохимии и аналитической химии им. В. И. Вернадского РАН (ГЕОХИ РАН) e-mail: <u>ugeochem@geochem.home.chg.ru</u>