Субвертикальные скопления гипоцентров землетрясений – сейсмические "гвозди"

В. Н. Вадковский^{1,2}

Получено 20 декабря 2011 г.; опубликовано 5 февраля 2012 г.

В данной работе исследовалось пространственное распределение гипоцентров землетрясений в районе Японских островов по данным каталога Японского Метеорологического Arentctba (Japan Meteorological Agency – JMA) за 1983–1990 гг. Обнаружены почти вертикальные, изометричные в плане, короткоживущие скопления гипоцентров землетрясений, названные сейсмическими "гвоздями". Они состоят, главным образом, из очагов слабых землетрясений с магнитудой 2–3 по используемой в ЈМА шкале магнитуд $M_{\rm JMA}$. Протяженность "гвоздя" по вертикали составляет от 10 до 50 км, глубина образования не превосходит 90 км. Эпицентральная проекция "гвоздя" имеет в диаметре размер 5–10 км. Не установлено предпочтительного направления (вверх или вниз) формирования "гвоздя" с течением времени. Гипоцентры землетрясений равновероятно заполняют все тело "гвоздя" в процессе его формирования. Время формирования "гвоздя" – от нескольких дней до месяца. Не наблюдается прямой корреляции "гвоздей" с сильными землетрясениями с $M_{\text{JMA}} > 5,0$ и с современным активным вулканизмом. Компактность "гвоздей", их почти вертикальное расположение в интервале глубин 0-100 км и короткое время образования позволяют предположить участие в этом процессе флюидов. Подобные скопления очагов землетрясений обнаруживаются и в других регионах. КЛЮЧЕВЫЕ СЛОВА: Сейсмофокальная зона; субвертикальные скопления гипоцентров землетрясений; сейсмические "гвозди"; Марковское свойство; глубинные флюиды.

Ссылка: Вадковский, В. Н. (2012), Субвертикальные скопления гипоцентров землетрясений – сейсмические "гвозди", Вестник ОНЗ РАН, 4, NZ1001, doi:10.2205/2012NZ000110.

Введение

Взаимодействие Тихоокеанской и Евроазиатской плит является основным процессом, определяющим тектоническую обстановку в районе Японских островов, начиная с юры [Xaun, Ломизе, 2010; Read, Watson, 1975]. Наличие парных метаморфических поясов, параллельных осям желобов, искривление дуги Японских островов в по-

© 2012 Геофизический центр РАН.

http://onznews.wdcb.ru/doi/2012NZ000110.html

слемеловое время, определенное по палеомагнитным данным, различие составов базальтов – от щелочных до толеитов [Бримхолл, Крерар, 1992; Рингеуд, 1981], наличие растяжений в задуговой части – в глубоководных котловинах Японского моря, в которых некоторые исследователи обнаружили спрединг, свидетельствуют о многообразии явлений, сопровождающих это взаимодействие. Определены основные фации метаморфизма, играющие главную роль в превращениях вещества сталкивающихся плит [Uemura, Mizutani (Eds.), 1984]. Методами детальной сейсмической томографии [Hasegawa et al., 1991; Okada et al., 1995] установлена сильная (до 6%) анизотропия скоростей P и S волн в нависающей части коры и мантии над погружающейся плитой.

На Рис. 1а показано пространственное распределение эпицентров землетрясений по каталогу JMA до 1990 г., трансформных разломов и современных активных вулканов изучаемого региона. Сейсмофокальная зона связана с глубоководными желобами: Курило-Камчатским на севере, собственно Японским в северной и центральной части о. Хонсю, Идзу-Бонинским, уходящим к югу, и Нансей, простирающимся в юго-западном направлении. Цепочки современных активных вулканов параллельны

¹Геологический факультет МГУ им. М. В. Ломоносова, Москва, Россия.

²Статья подготовлена к печати доцентом кафедры динамической геологии геологического факультета МГУ, к.ф.-м.н. В. С. Захаровым и зав. лабораторией геофизических данных ГЦ РАН, к.ф.-м.н. Н. А. Сергеевой на основе авторского текста В. Н. Вадковского, найденного в его архиве. В. Н. Вадковский готовил эту статью к публикации как обобщающую результаты его многолетней работы по изучению особенностей распределений гипоцентров землетрясений. Все результаты В. Н. Вадковского проверены по программам автора на основе соответствующих исходных данных.

Рис. 1. Район исследований. а – пространственное распределение эпицентров землетрясений по каталогу JMA (круги) до 1990 г., границ плит (зеленые линии, по [*Bird*, 2003]), трансформных разломов (пунктирные линии) и современных активных вулканов (треугольники); б – 3D структура распределения очагов землетрясений.

желобам. На Рис. 16 представлена трехмерная картина распределения гипоцентров землетрясений. Ясно видны наклон сейсмофокальной области под островную дугу и неоднородность распределения землетрясений по глубине вдоль линии желоба.

Обычно всю сейсмичность зон субдукции сводят к зонам Беньофа (наклонным сейсмофокальным зонам) и диффузной приповерхностной зоне землетрясений. Однако при изучении сейсмического каталога JMA были обнаружены компактные (в пространстве и времени) скопления очагов землетрясений, которые не могли быть отнесены ни к одной из двух вышеупомянутых сейсмических зон [*Badковский*, 1996]. За их характерную форму, близкую к цилиндрической, ориентированную преимущественно вертикально с возможным отклонением в несколько градусов, им было дано название сейсмические "гвозди" [*Badковский*, 1996, 2006; *Badковский, Beceловский*, 2000; *Vadkovsky*, 1997, 2005].

Целью данной работы является изучение субвертикальных скоплений гипоцентров землетрясений и определение их пространственно-временных и динамических характеристик.

Источники данных

В работе использовался каталог Японского метеорологического агентства (Japan Meteorological Agency – JMA) [JMA, 1994], данные по современным активным вулканам [CDIAC, 1991], линейным магнитным аномалиям и зонам разломов Мирового океана [*Candy et al.*, 1989]. Данные получены в Мировом центре данных по физике твердой Земли (Москва).

Начиная с 1983 г. сейсмологическая служба JMA ведет определения координат гипоцентров землетрясений не менее чем по пяти зарегистрированным временам вступлений P и S волн на трех и более станциях на основе региональных уточненных таблиц времен пробега [*JMA*, 2005]. Точность определения широты и долготы составляет не хуже 0,01°, глубины – не хуже 1 км для мелких землетрясений и 4–5 км для глубоких.

В настоящей работе было проведено исследование изменения качества определения параметров гипоцентров землетрясений в каталоге JMA с течением времени. На Рис. 2а показано 3D-распределение гипоцентров землетрясений для области 30–40°с.ш. и 130–140°в.д. в интервале глубин 0–90 км в 1981 г., а на Рис. 26 – аналогичное распределение для того же района в 1983 г. По данным за 1981 г. распределение по глубинам носит дискретный характер (по 10 км), что выражается наличием "этажей", на которых концентрируются очаги. В то же время для данных за 1983 г. подобная дискретность отсутствует, и распределение имеет непрерывный вид. В дальнейшем в работе использовались данные каталога JMA начиная с 1983 г.

Изображение сейсмофокальной зоны в районе 30– 40°с.ш. и 135–145°в.д. в диапазоне глубин 0–90 км по данным за 1990 г. показано на Рис. 3 в двух проекциях: вдоль простирания желоба (а) и поперек (б). На этом рисунке, также как на Рис. 26, обращают на себя внимание почти вертикальные скопления гипоцентров землетрясений.

Рис. 2. Пространственное распределение гипоцентров землетрясений для области 30–40°с.ш. и 130–140°в.д в интервале глубин 0–90 км за: а – 1981 г., б – 1983 г.

Методика исследований

Поскольку в задачи данного исследования не входит изучение землетрясений на уровне их очагов, то под очагом землетрясения здесь понимается точка с заданными пространственными координатами и магнитудой.

Для отображения положения эпицентров использована программа Surfer. Для изучения тонкой структуры сейсмичности применялась программа STATISTICA, которая позволяет отображать пространственное распределение гипоцентров землетрясений в заданном районе, в заданном временном окне, в заданном интервале глубин и под разными углами зрения, а также оценивать статистические характеристики совокупности изучаемых событий.

Поиск сейсмических "гвоздей" происходил, главным образом, посредством отображения всех землетрясений изучаемого района в 3D виде, и в визуальном выделении скоплений землетрясений характерной конфигурации. Возможно также применение аналитического метода выделения групп землетрясений, относимых к сейсмическим "гвоздям", на основании их особенностей, например, малом рассеянии (дисперсии) эпицентров большо-

Рис. 3. Вертикальные скопления гипоцентров землетрясений в районе 30–40°с.ш. и 135–145°в.д. на глубинах до 90 км в двух проекциях за 1990 г.

Рис. 4. Изображение в двух проекциях сейсмического "гвоздя" в районе о. Хоккайдо с координатами 43.5° с.ш., 142° в.д., сформировавшегося из 194 слабых землетрясений в январе-марте 1989 г. Закрашенный круг – землетрясение с $M_{\rm JMA} = 5, 5$.

го количества близких по времени возникновения землетрясений [*Badковский*, *Beceловский*, 2000]. Затем каждый сейсмический "гвоздь" подвергался детальному исследованию.

Временные характеристики формирования скоплений землетрясений изучались с помощью техники исследования Марковских цепей [Харбух, Бонэм-Картер, 1974]. Анализировались матрицы переходных вероятностей M_{ii} обнаружения землетрясения на глубине Z_i (в диапазоне глубин), если предыдущее по времени землетрясение произошло на глубине Z_j (в диапазоне глубин). Определялось Марковское свойство матрицы. Если в матрице переходных вероятностей элементы, стоящие в каждой строке, различаются, можно говорить о наличии Марковского свойства в изучаемой последовательности изменения состояний, т.е. о наличии зависимости следующего состояния от предыдущего. Одинаковые строки в матрице переходных вероятностей свидетельствуют о том, что вероятность системы находиться в следующий момент в каком-либо состоянии не зависит от предыдущего состояния. Это говорит об отсутствии Марковского свойства, то есть о независимости событий.

Выделение отдельных сейсмических "гвоздей"

При исследовании каталога землетрясений JMA было установлено, что скопления гипоцентров землетрясений, названные сейсмическими "гвоздями", образуются как в породах висячего крыла, так и в континентальной земной коре, причем в последней их значительно больше, что, по-видимому, связано с ее большей хрупкостью. Они состоят, главным образом, из очагов слабых землетрясений (с магнитудой 2–3 по используемой в JMA шкале $M_{\rm JMA}$). Протяженность "гвоздя" по вертикали составляет от 10 до 50 км, глубина образования не превосходит 90 км. Эпицентральная проекция "гвоздя" имеет размер $0,05-0,1^{\circ}$ (5–10 км) в диаметре. Верхняя часть "гвоздя" может выходить, а может и не выходить на поверхность Земли.

Пример такого "гвоздя", сформировавшегося из 194 слабых землетрясений в течение нескольких дней в январе–марте 1989 г. в центре о. Хоккайдо (с координатами 43,5° с.ш., 142° в.д.) показан на Рис. 4 в двух проекциях, позволяющих судить о его почти вертикальном положении. Данная структура простирается до глубины 30 км. Единственное сильное землетрясение с магнитудой $M_{\rm JMA} = 5,5$ (показано на рисунке закрашенным кругом) за этот интервал времени произошло очень далеко от "гвоздя". На рисунке виден также и другой сейсмический "гвоздь" меньшего размера, сформировавшийся неподалеку на глубинах 40–60 км.

Два "гвоздя", сформировавшиеся в течение января 1983 г. вблизи южного берега о. Хонсю, показаны на Рис. 5 Протяженность "гвоздей" по глубине составляет 15–20 км. Остальные землетрясения образуют диффузное распределение в пространстве. На данном рисунке представлены также два относительно сильных землетрясения $M_{\rm JMA} = 5,7$: одно из них лежит в пределах "гвоздя", другое произошло на некотором расстоянии от "гвоздей".

Множество "гвоздей", сформировавшихся в течение 1984 г. в районе 26–36°с.ш. и 130–140°в.д., показано в двух проекциях на Рис. 6. Расположение современных активных вулканов отмечено треугольниками на поверхности.

Анализ Рис. 1–Рис. 6 показывает, что взаимное положение "гвоздей" и вулканов не позволяет говорить о прямой связи между ними. Некоторые проявившиеся сейсмические "гвозди", возможно, связаны с современным вулканизмом, так как расположены прямо под вулканами. В

Рис. 5. Два сейсмических "гвоздя", сформировавшихся в январе 1983 г. вблизи о. Хонсю. Закрашенные круги – землетрясения с $M_{\text{JMA}} = 5, 7.$

других случаях "гвозди" не достигают поверхности или расположены там, где нет современных вулканов.

Рис. 6 также иллюстрирует, как постепенно формируется сейсмофокальная зона. С течением времени при образовании наклонной в целом сейсмофокальной зоны в районе Японского желоба можно видеть появление мно-

жества "гвоздей" с почти вертикальной ориентацией в интервале глубин от 0 до 90 км. Сейсмичность не локализуется по отдельным поверхностям, а захватывает весь объем зоны субдукции. Все множество землетрясений в зоне субдукции является фрактальным множеством [*Turcotte*, 1997].

Рис. 6. Сейсмические "гвозди", сформировавшиеся в 1984 г. в районе 26–36°с.ш. и 130–140° в.д., в двух проекциях.

Рис. 7. Формирование сейсмического "гвоздя" в районе о. Хоккайдо в 1989 г. во времени. а – гипоцентры землетрясений; б – последовательность появления во времени землетрясений в период с августа 1988 г. по июнь 1989 г. Учащение событий в начале 1989 г. соответствует формированию сейсмического "гвоздя".

Формирование сейсмического "гвоздя" во времени

В некоторых случаях из рассмотренных нами относительно сильные землетрясения ($M_{\rm JMA} > 5$) сопровождают формирование "гвоздя", находясь в его основании или в середине. Однако в других случаях рассмотренные субвертикальные очаговые структуры состоят только из слабых землетрясений ($M_{\rm JMA} < 4$). В ходе наших исследований нам не удалось выявить какого-либо влияния указанных относительно сильных событий на характер формирования сейсмического "гвоздя".

Время образования сейсмических "гвоздей" варьируется от первых дней до первых месяцев и зависит от их величины. Небольшие зарождающиеся "гвозди" могут образовываться за 1–2 дня, при этом "гвоздь" почти мгновенно (менее чем за сутки) "вырастает" до вертикальной протяженности в 5–10 км, а иногда и больше [Вадковский, Веселовский, 2000].

Рассмотрим последовательность появления во времени землетрясений в процессе формирования "гвоздя" в районе о. Хоккайдо с координатами $43,5^{\circ}$ с.п., 142° в.д., представленного на Рис. 4. На Рис. 7а показан сам "гвоздь", а на Рис. 76 – диаграмма изменения во времени глубин очагов Z(t), формирующих данную структуру. Хорошо видно, как процесс возникновения диффузно распределенных событий сменяется локализованным в пространстве процессом формирования "гвоздя" в первые три месяца 1989 г.

Отметим, что какого-либо тренда изменения глубины событий с течением времени не наблюдается. Для определения, существует ли зависимость глубины текущего события в "гвозде" от глубины предшествующего события, была рассчитана матрица переходных вероятностей для четырех интервалов глубин. Полученная матрица не обладает Марковским свойством. Таким образом, формирование "гвоздя" происходит сразу во всем интервале глубин и не наблюдается предпочтительного направления его роста – вверх или вниз. Фурье-анализ этой временной последовательности также не позволил выявить каких-либо периодов изменения глубины гипоцентров с течением времени.

Активизация проявления сейсмичности вдоль "гвоздя" может повторяться несколько раз в течение того периода, которому соответствует используемая часть каталога JMA – 8 лет. Можно предположить, что структуры, по которым развивается сейсмический процесс в виде "гвоздя", могли сформироваться существенно раныше, чем имеющийся в нашем распоряжении период регистрации землетрясений.

На Рис. 8 показано изменение количества землетрясений в день N за интервал времени с 13 января по 4 марта 1989 г. при формировании "гвоздя" в центре о. Хоккайдо. Анализ этого распределения не позволяет выделить экспоненциальный спад количества землетрясений со временем. Возникновение сейсмических "гвоздей" – процесс затухающий, но, по-видимому, отличающийся по характеру от затухания афтершоков сильных землетрясений.

Возможный механизм образования сейсмических "гвоздей"

Во временном масштабе тектонических процессов, определяющих сейсмичность региона, сейсмические "гвозди" представляют собой почти мгновенные, локальные явления. Пространственное распределение "гвоздей" в известном смысле подобно распределению землетрясений с $M_{\rm JMA} \geq 5$, их распределение носит самоподобный

Рис. 8. Изменение количества землетрясений при формировании "гвоздя" в центре о. Хоккайдо с 13.01 по 04.03.1989 г.

(фрактальный характер) [*Turcotte*, 1997]. В структуре самих сейсмических "гвоздей" также проявляется свойство самоподобия: в работе [*Badковский*, *Beceловский*, 2000] отмечено, что некоторые "гвозди" состоят из нескольких более мелких, подобных им.

К сожалению, интервал времени 1983–1990 гг. слишком мал, чтобы уверенно говорить о временных и пространственных характеристиках распределений "гвоздей". Тем не менее, указанные особенности (геометрия и скорости формирования) проявления "гвоздей" дают возможность высказать предположение о возможной роли флюидов в процессе их образования, поскольку ни расплавы, ни тем более твердые фазы, не могут обладать столь высокой мобильностью.

В верхней части погружающейся океанической литосферы происходят интенсивные процессы выделения воды: выжимание ее из пор, трещин, захваченных осадков в самой верхней ее части, дегидратация гидратированных фаз серпентинитов на глубинах до 100 км и выделение воды при плавлении водосодержащего амфиболита [Бримхолл, Крерар, 1992; Кусков, Хитаров, 1982; Рингвуд, 1981]. Нелинейные процессы динамики флюидов при соответствующих P - T условиях рассмотрены во многих работах [Абдрахаимов и др., 1996; Федотов, 1976; Aharonov et al., 1995; Natale, Salusti, 1996], где получены обнадеживающие оценки временных и пространственных характеристик. Этим, возможно, объясняются и особенности механизмов очагов слабых землетрясений [Hasegawa et al., 1991].

Сейсмические "гвозди" в других районах

На основании анализа каталога JMA выделен целый ряд аналогичных структур в районе Японии [Вадковский, 1996, 2006; Вадковский, Веселовский, 2000; Vadkovsky, 1997, 2005]. Однако субвертикальные зоны концентрации очагов землетрясений имеют место и в других районах. Так, сейсмический "гвоздь" обнаружен в районе моря Банда (4°ю.ш.-6°с.ш., 121–131°в.д) по данным каталога PDE (NEIC PDE catalog, National Earthquake Information Center, U.S. Geological Survey, [http://earthquake.usgs.gov/regional/neic/index.php) за несколько месяцев 1983 г. "Гвоздь" расположен в интервале глубин 40–75 км. Примеры структур типа сейсмических "гвоздей" можно видеть и в других регионах Земли: Аляска (54–64°с.ш., 144–154°з.д.), в районе Южно-Сандвичева желоба (54–64°ю.ш., 22–32°з.д.), но менее отчетливо.

В континентальной зонах коллизии (Памир, Таджикско-Афганская граница и зона Вранча, Румыния) гипоцентры землетрясений по данным каталога PDE, начиная с некоторого уровня глубины (30–40 км), расположены в узких изометричных в плане вертикальных зонах, которые также могут быть названы "гвоздями". Основное отличие по отношению к "гвоздям", выявленным в зонах субдукции, заключается в размерах: 2-3°(200-300 км) в плане и 100-150 км в глубину, и времени формирования – более 50 лет. Изучение изменения во времени глубин гипоцентров при формировании "гвоздей" как Марковского процесса не показало никакого выделенного направления (вверх или вниз).

В работе [Шевченко и др., 2011] установлено существование столбообразного близвертикального скопления очагов землетрясений в центральной части территории Гармского геодинамического полигона (Таджикистан). Близкие по морфологии и положению в земной коре скопления очагов афтершоков выявлены в связи с Алтайским (2003 г., $M_w = 7,3$), Нефтегорским (1996 г., $M_w = 7,1$), Култукским (2008 г., $M_w = 6,3$), Дагестанским (1970 г., $M_S = 6, 6$) землетрясениями. Кроме того, предполагается, что к образованиям сходного типа можно отнести некоторые другие, так называемые "гнездовые" скопления очагов землетрясений – Вранчское, Гиндукушское. При этом отсутствует связь этих скоплений с какими-либо элементами тектонической структуры регионов. В указанной работе также делается предположение, что эти структуры связаны с поступлением глубинных флюидов.

Результаты и выводы

Примененная методика исследования сейсмофокальной зоны вблизи Японских островов по данным каталога JMA позволила установить наличие кратковременных (от нескольких дней до месяца) скоплений слабых землетрясений, ориентированных почти вертикально и расположенных в интервале глубин 0–90 км в нависающей части литосферы. Такие скопления названы сейсмическими "гвоздями". "Гвозди" обнаружены и в других районах по данным каталога PDE.

Не установлено предпочтительного направления (вверх или вниз) формирования "гвоздя" с течением времени, формирование отдельного "гвоздя" происходит сразу во всем интервале глубин. Гипоцентры землетрясений равновероятно заполняют все тело "гвоздя" в процессе его формирования. Не наблюдается прямой корреляции "гвоздей" с сильными ($M_{\rm JMA} > 5,0$) землетрясениями и с современным активным вулканизмом.

Высказано предположение о возможной роли динамики флюидов в литосфере как источнике образования "гвоздей". Существование "гвоздей" свидетельствует о сильной анизотропии коры и мантии над погружающейся океанической литосферой, которая может изменяться с течением времени.

Благодарности. В своем тексте В. Н. Вадковский выразил благодарность за многочисленные обсуждения работы, сделанные замечания и за помощь в работе С. А. Федотову, Г. А. Соболеву, С. Уеде, Н. А. Сергеевой, Н. В. Короновскому, В. С. Захарову, А. Ю. Бычкову и Л. И. Деминой.

Литература

- Абдрахаимов, М. З., Ю. И. Кузнецов, М. С. Зонн (1996), Структура порового пространства глубинных образований земной коры (по данным Кольской сверхглубокой скважины), Физика Земли, 5, 35–45.
- Бримхолл, Д. Х., Д. А. Крерар (1992), Рудные флюиды: от магматических до гипергенных, *Термодинамическое моделирование в геологии*, Москва, Мир, 247–353.
- Вадковский, В. Н. (1996), Природа и механизм сейсмических "гвоздей", "Ломоносовские чтения 1996 г.", Тезисы докладов, Москва, МГУ, 63–64.

- Вадковский, В. Н. (2006), Что происходит в окрестности сильных землетрясений Японии, Области активного тектоногенеза в современной и древней истории Земли, том 1, Москва, ГЕОС, 70–72.
- Вадковский, В. Н., Р. В. Веселовский (2000), "Сейсмические гвозди" Японской зоны субдукции, Актуальные проблемы региональной геологии и геодинамики, Москва, МГУ, 4–5.
- Кусков, О. Л., Н. И. Хитаров (1982), Термодинамика и геохимия ядра и мантии Земли, Москва, Наука, 278.
- Рингвуд, А. Е. (1981), Состав и петрология мантии Земли, Москва, Недра, 584.
- Федотов, С. А. (1976), О подъеме основных магм в земной коре и механизме трещинных базальтовых извержений, Изв. АН СССР. Сер. геологическая, 10, 5–23.
- Хаин, В. Е., М. Г. Ломизе (2010), Геотектоника с основами геодинамики, Москва, КДУ, 576.
- Харбух, Д., Г. Бонэм-Картер (1974), Моделирование на ЭВМ в геологии, Москва, Мир, 320.
- Шевченко, В. И., С. С. Арефьев, А. А. Лукк (2011), Близвертикальные скопления очагов землетрясений, не связанные с тектонической структурой земной коры, Физика Земли, 4, 16–38.
- Aharonov, E., J. A. Whitehead, P. B. Kelemen (1995), Channeling instability of upwelling melt in the mantle, J. Geoph. Res., 100, B10, 20433–20450.
- Bird, P. (2003), An updated digital model of plate boundaries, Geochemistry, Geophysics, Geosystems, 4, B10, 3, doi:10.1029/2001GC000252.
- Candy, S. C., J. L. LaDrecque, R. L. Larson, W. C. Pitman (III), X. Golovchenko, W. F. Haxby (Eds.) (1989), Magnetic lineations of the World Ocean Basins, Scale 1 : 27400000 at the equator, Mercator projection, AAPG. Oklahoma.
- CDIAC (1991), CDIAC's Numeric Data Package Collection (on CD-ROM), Version 1.02, WDC-A. File NDP 013.
- Japan Meteorological Agency (JMA) (1994), Catalog of felt earthquakes which occurred in the Japan region, compiled by the Japan Meteorological Agency (JMA), 1715–1990, *Global Hypocenter Data Base on CD-ROM, Version 3.0*, USGS/NEIC.
- Japan Meteorological Agency (JMA) (2005), The Seismological and Volcanological Bulletin of Japan for January 2005, *JMA catalogue data*, CD-ROM.
- Hasegawa, A., et al. (1991), Deep structure of the Northeastern Japan arc and its relationship to seismic and volcanic activity, *Nature*, 352, 6337, 683–689.
- Natale, G., E. Salusti (1996), Transient solution for temperature and pressure waves in fluid-saturated porous rocks, *Geophys. J. Int.*, 124, 649–656.
- Okada, T., N. Matsuzawa, A. Hasegava (1995), Shear-wave polarisation anisotropy beneath the north-eastern part of Honshu, Japan. Geophys. J. Int., 123, 781–797.
- Read, H. H., J. Watson (1975), Introduction to Geology, Vol. 2, Earth History, Part II, Later Stages of Earth History, London, Macmillan, 371.
- Turcotte, D. L. (1997), Fractals and Chaos in Geology and Geophysics, second edition, Cambridge, Cambridge Univ. Press, 398.
- Uemura, T., S. J. W. Mizutani (Eds.) (1984), Geological Structures, New York, John Wiley & Sons, 309.
- Vadkovsky, V. N. (1997), Fine structure of subduction zone seismicity, The 29th General Assembly of the IASPEI, Abstracts, Thessaloniki, Greece, 217.
- Vadkovsky, V. N. (2005), What happened near strong earthquakes in Japan, Geophysical Research Abstracts, EGU General Assembly, 7, 08382.

В. С. Захаров, Геологический факультет МГУ им. М. В. Ломоносова, Москва, Россия. (vszakharov@yandex.ru)

Н. А. Сергеева, Геофизический центр РАН, Москва, Россия. (n.sergeyeva@gcras.ru)