Экспериментальное исследование кинетики изотермического дегидроксилирования природного гетита

С. К. Грибов, А. В. Долотов

Геофизическая обсерватория «Борок» – филиал Института физики Земли им. О.Ю.Шмидта РАН, пос. Борок Ярославской обл.

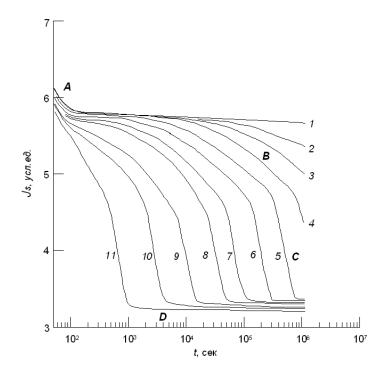
gribov@borok.yar.ru; adolotov@borok.yar.ru

Исследованы изменения со временем намагниченности насыщения при изотермическом дегидроксилировании природного гетита. Определена энергия активации фазового перехода гетит→гематит, а также проведена оценка структурной устойчивости изученной гетитовой фракции в условиях земной поверхности.

Ключевые слова: гетит, гематит, изотермическая кинетика, намагниченность насыщения

Ссылка: Грибов, С. К., А. В. Долотов (2012), Экспериментальное исследование кинетики изотермического дегидроксилирования природного гетита, *Вестник ОНЗ РАН*, 4, NZ9001, doi:10.2205/2012NZ ASEMPG.

Реакция дегидроксилирования гетита α -FeOOH·nH₂O $\rightarrow \alpha$ -Fe₂O₃+nH₂O относится к распространенному процессу образования гематита α -Fe₂O₃ в осадочных породах. Однако кинетических исследований данного фазового перехода имеется все еще крайне недостаточно для получения ответа на вопросы, насколько растянут во времени этот процесс в природных условиях и как велика минералогическая устойчивость гетита. Между тем, все это очень важно знать для оценки возможностей возникновения и сохранности как первичной, так и вторичной химической намагниченности (*CRM*), прежде всего в красноцветных осадочных формациях в процессе диагенеза.

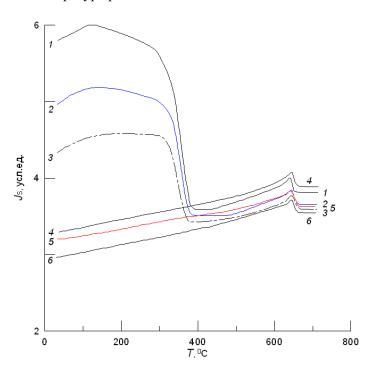

В данной работе кинетика α -FeOOH $\rightarrow \alpha$ -Fe₂O₃ превращения изучалась на природной мономинеральной гетитовой фракции, представляющей собой плотные порошковые агрегаты, состоящие из частиц игольчатой формы (со средним размером 400х50 нм), вытянутых вдоль кристаллографической c-оси кристалла. Согласно результатам рентгеноструктурного анализа исходная фракция описывается орторомбической (пр. гр. Pbnm, Z=4) элементарной ячейкой с параметрами a=4.6095 Å, b=9.9699 Å, c=3.0250 Å и объемом V=139.02 Å³, близкими к указанным в базе данных дифрактограмм ICDD PDF-2 (выпуск 2008 года, карточка 00-029-0713). Средние размеры кристаллитов L (а точнее областей когерентного рассеяния рентгеновских лучей по нормали к отражающим плоскостям (hkl), рассчитанных по уширению пиков на дифрактограммах) для первичного гетита составили \sim 34.8 нм, \sim 50.6 нм и >70 нм соответственно вдоль кристаллографических направлений [100], [010] и [001], что находится в соответствии с игольчатой морфологией частиц.

Исследование разложения искомой гетитовой фракции в атмосфере воздуха с помощью метода динамической термогравиметрии (скорость нагрева образца v=10 град/мин) показало $\sim 0.49~\%$ потерю массы исходного вещества при нагреве до $150~^{\circ}\mathrm{C}$ (соответствующую выходу из минерала адсорбированной воды) и снижение $\sim 9.62~\%$ веса в интервале $240~-370~^{\circ}\mathrm{C}$ (обусловленное удалением структурных гидроксилов (ОН) и отвечающее эндотермическому преобразованию гетитовой элементарной решетки в гематитовую). На последующее вплоть до $1000~^{\circ}\mathrm{C}$ постепенное удаление «следов» ОН-групп в α -Fe₂O₃ пришлось еще $\sim 0.96~\%$ потери веса образца. Таким образом, общая потеря массы превысила величину (10.1~%), отвечающую стехиометрическому соединению. Исходя из представленных результатов, формула искомого гетита может быть записана в виде FeOOH·0.0538H₂O. Согласно данным термомагнитного (по намагниченности насыщения J_S) анализа (v=4 град/сек) исходных образцов температура Нееля (T_N) гетитовой фракции составила $\sim 120~^{\circ}\mathrm{C}$, температурный интервал фазового перехода гетит—гематит — (250~-380) $^{\circ}\mathrm{C}$, температура Кюри (T_C) образованного гематита — $\sim 673~^{\circ}\mathrm{C}$. По рассчитанным рентгеноструктурным данным конечная гематитовая фаза (после разложения гетита при $250~^{\circ}\mathrm{C}$ в течение $312~\mathrm{часов}$) характеризовалась следующими параметрами: a=5.036

Å, c=13.753 Å, $V=302.1 \text{Å}^3$ в гексагональной установке $R\overline{3}C$ при L>60 нм в кристаллографическом направлении [110], совпадающим с осью текстуры частиц α -Fe₂O₃.

В настоящем исследовании кинетика дегидроксилирования гетита была изучена в атмосфере воздуха в изотермических условиях с помощью *in situ* измерения изменения со временем намагниченности насыщения $J_S(t)$ в постоянном магнитном поле 0.65 Тесла в ходе непрерывного в течение 312 часов нагрева образца при одной из одиннадцати заданных температур между 183 $\,^{0}$ С и 273 $\,^{0}$ С. При этом первая, достаточно низкая температура, отвечающая началу процесса дегидроксилирования, была выбрана для того, чтобы максимально приблизить лабораторные эксперименты к реальным природным условиям, но еще иметь возможность проведения их на выбранной лабораторной шкале времени; конечная же температура изотермического нагрева, согласно результатам термогравиметрического анализа исходных образцов, соответствует интервалу максимальной скорости реакции.

На рис. 1 представлены изотермические зависимости изменения намагниченности насыщения от времени индуцированного дегидроксилирования исходной гетитовой фракции. В поведении кинетических кривых Js(t) прослеживаются следующие закономерности: выраженное уменьшение величины Js в течение первоначального отрезка времени (участок A), за которым следует период смены наклона падения; при этом в диапазоне температур (198 – 273) $\,^{0}$ С на кривой $J_{s}(t)$ проявляются один или два (соответственно B и C) участка экспоненциального снижения намагниченности насыщения, положения которых изменяются с температурой. Причем наклон C участка кривой $J_{s}(t)$ везде наиболее крутой, чем на предыдущих. Характерно также, что кинетические кривые $J_{s}(t)$, регистрируемые в ходе трехсот двенадцатичасового разложения гетитовой фракции при $T \geq 204\,^{0}$ С, на завершающих этапах измерений $J_{s}(t)$ (участок D) показывают мало отличающиеся и стабильные (в пределах точности измерения) значения J_{s} , охватывающие наиболее существенный отрезок времени на этой стадии реакции (рис. 1). Важно отметить также, что в результате изотермического дегидроксилирования гетита максимальное падение намагниченности насыщения составило ~ 2 раза.

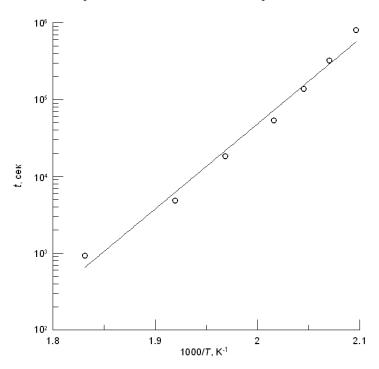

Рис. 1. Изменения намагниченности насыщения в зависимости от времени (логарифмическая шкала) и температуры дегидроксилирования исходной гетитовой фракции. Цифрами I-II отмечены кривые, соответствующие разным температурам реакции: $I-183~^{\circ}\mathrm{C}$, $2-187~^{\circ}\mathrm{C}$, $3-191~^{\circ}\mathrm{C}$, $4-198~^{\circ}\mathrm{C}$, $5-204~^{\circ}\mathrm{C}$, $6-210~^{\circ}\mathrm{C}$, $7-216~^{\circ}\mathrm{C}$, $8-223~^{\circ}\mathrm{C}$, $9-235~^{\circ}\mathrm{C}$, $10-248~^{\circ}\mathrm{C}$, $11-273~^{\circ}\mathrm{C}$. A, B, C и D – характерные участки кривых, обсуждаемые в тексте.

По данным термомагнитного анализа отожженных образцов (рис. 2) установлено, что дегидроксилирование гетита в течение 312 часов при $T=183-198~^{\circ}\mathrm{C}$ приводит к

ГРИБОВ И ДР.: ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ КИНЕТИКИ

сосуществованию гетитовой и гематитовой фаз. Причем обнаружено, что в процессе реакции (с увеличением температуры) T_N остаточного гетита монотонно увеличивается с 120 до 191 0 С, максимальная температура фазового перехода монотонно снижается с 380 0 С до 367 0 С, тогда как T_C гематитовой компоненты составляет ~ 668 –671 0 С. При этом наблюдаемое при термомагнитном анализе увеличение Js(T) гематитовой составляющей, вероятно, обусловлено эффектом Гопкинсона – ростом слабого ферромагнитного момента магнитожесткого материала во внешнем магнитном поле, малом по сравнению с полями насыщения. Образцы же, подвергнутые за тоже время дегидроксиляции при $T \geq 204$ 0 С, в ходе последующего терморазмагничивания всегда проявляют однофазность с $T_{C} \sim 673$ 0 С (рис. 2).

На основании проведенных рентгенографических исследований всех подвергнутых длительной изотермической дегидратации образцов [Грибов и Долотов, 2011] и анализа литературных данных можно сделать следующие предварительные заключения. Начальный участок A кинетической кривой Js(t,T) (рис. 1), очевидно, обусловлен проявлением слабого ферромагнетизма исходного гетита с $T_C > T_N$. Спад Js(t) на условно выделенных нами участках B и C отвечает реакции дегидроксилирования, приводящей к образованию гематита соответственно в приповерхностной и внутренней части гетитового зерна. Завершение спада Js(t) (участок D данной кривой) соответствует полному фазовому превращению гетит—гематит при указанной на графике температуре реакции.


Рис. 2. Кривые терморазмагничивания намагниченности насыщения образцов, дегидратированных в течение 312 часов при разных температурах: $I-183~^{0}$ C, $2-191~^{0}$ C, $3-198~^{0}$ C, $4-210~^{0}$ C, $5-223~^{0}$ C, $6-273~^{0}$ C.

Для участков B и C преимущественно экспоненциального уменьшения намагниченности кривых $J_S(t)$ значения эффективной энергии активации (E) образования гематита из гетита, рассчитанные из линейных зависимостей $\operatorname{Ln}(\mathrm{d}J_S/\mathrm{d}t)$ от 1/T в температурном диапазоне $204-273\,^{0}$ С, оказались равными и составили $\sim 201.48\,$ кДж/моль. Этот факт указывает на то, что лимитирующей стадией процесса дегидроксилирования гетита является диффузия катионов Fe^{3+} . Следует заметить также, что данное значение очень близко к величине параметра $E\sim 205.14\,$ кДж/моль, полученного нами с использованием термогравиметрического метода в сопоставимой температурной области разложения исходных образцов [статья в печати]. Для сравнения укажем, что для структурного перехода гетит—гематит представленные в литературе значения энергии активации находятся в интервале $88-247\,$ кДж/моль и в значительной мере зависят от размера гетитовых частиц [Cornell and Schwertmann, 2003].

Временная экстраполяция магнитометрических кривых до значений J_S , соответствующих для искомых образцов полному переходу α -FeOOH $\rightarrow \alpha$ -Fe₂O₃, позволила оценить время t^* ,

ГРИБОВ И ДР.: ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ КИНЕТИКИ

необходимое для завершения фазового превращения в исследованном температурном интервале T=204—273 0 С. Линейность полученной зависимости $\ln t^{*}(1/T)$ (рис.3) дает возможность ее экстраполяции на более низкие температуры, т.е. позволяет выйти на моменты времени, не доступные для лабораторных исследований. Оказалось, что самопроизвольная полная гематизация изученной гетитовой фракции в природных условиях может быть реализована за времена ~ 1 или ~ 10 млн. лет лишь в случае регионального прогрева вмещающих пород до температур соответственно ~ 85 и ~ 73 0 С. Эти оценки дают основание утверждать, что в условиях земной поверхности в гетит-содержащей осадочной породе образование гематита с сопутствующими компонентами CRM происходит не в период формирования осадка или в скором времени после этого, а скорее всего осуществляется в течение длительного геологического времени (десятки миллионов лет), вполне достаточного для того, чтобы охватывать одну или более смен полярности геомагнитного поля. В таких случаях процесс спонтанной дегидратации гетита в гематит может играть определенную роль в химическом перемагничивании красноцветных осадочных образований в зоне гипергенеза.

Рис. 3. Зависимость расчетного времени (логарифмическая шкала) полной гематизации исходной гетитовой фракции от обратной температуры (1/T). Сплошная линия соответствует линейной аппроксимации данных.

Работа выполнена при поддержке гранта РФФИ № 09-05-00471.

Литература

Грибов, С. К., А. В. Долотов (2011). Особенности изотермической дегидратации природного гетита (α–FeOOH): рентгенографическое исследование, Сб. «Физико-химические и петрофизические исследования в науках о Земле». *Материалы конференции*, М., сс. 89–92.

Cornell, R. M., U. Schwertmann (2003). The iron oxides: structure, properties, reactions, occurrences and uses, 2nd ed. Wiley-VCH, p. 664.